Return to search

New techniques in nuclear magnetic resonance

The effect of short, strong radiofrequency pulses on the nuclear spin system is examined. Providing the durations of the pulses are short with respect to coupling constants within the spin system, they may be described by simple rotation operators which are exponential functions of the angular momentum operators. Operator algebra can be used to define the interaction of such pulses with the spin system, and the mutual interaction of a sequence of pulses. The case of a simple coupled spin system is examined in detail and it is found that a vector model can be used to describe the motion of the expectation values of the observables. This model also allows treatment of such 'non-classical 1 effects as coherence transfer and multiple-quantum coherence. The proposal is also made that certain types of pulse imperfection may be compensated by using specially constructed sequences of small numbers of pulses, which are termed 'composite pulses'. Their compensatory action is illustrated by computer simulation, and by experimental results. In the case of certain symmetrical composite pulses, operator algebra can be used to understand their overall effect in the presence of pulse imperfections, suggesting their use in such critical applications as multiple spin echo trains. Another class of symmetrical composite pulses provides rotations by arbitrary angles around the z-axis of the rotating reference frame, and is expected to be of use in multiple-quantum spectroscopy.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:276805
Date January 1981
CreatorsLevitt, Malcolm H.
ContributorsFreeman, Ray
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:8365b030-de70-4b96-a9a0-e0fd32290551

Page generated in 0.0021 seconds