Return to search

Coupled Modelling of Gas Migration in Host Rock and Application to a Potential Deep Geological Repository for Nuclear Wastes in Ontario

With the widening and increasing use of nuclear energy, it is very important to design and build long-term deep geological repositories (DGRs) to manage radioactive waste. The disposal of nuclear waste in deep rock formations is currently being investigated in several countries (e.g., Canada, China, France, Germany, India, Japan and Switzerland). In Canada, a repository for low and intermediate level radioactive waste is being proposed in Ontario’s sedimentary rock formations. During the post-closure phase of a repository, significant quantities of gas will be generated from several processes, such as corrosion of metal containers or microbial degradation of organic waste. The gas pressure could influence the engineered barrier system and host rock and might disturb the pressure-head gradients and groundwater flows near the repository. An increasing gas pressure could also cause damage to the host rock by inducing the development of micro-/macro-cracks. This will further cause perturbation to the hydrogeological properties of the host rock such as desiccation of the porous media, change in degree of saturation and hydraulic conductivity. In this regard, gas generation and migration may affect the stability or integrity of the integrate barriers and threaten the biosphere through the transmitting gaseous radionuclides as long-term contaminants. Thus, from the safety perspective of DGRs, gas generation and migration should be considered in their design and construction. The understanding and modelling of gas migration within the host rock (natural barrier) and the associated potential impacts on the integrity of the natural barrier are important for the safety assessment of a DGR. Therefore, the key objectives of this Ph.D. study include (i) the development of a simulator for coupled modelling of gas migration in the host rock of a DGR for nuclear waste; and (ii) the numerical investigation of gas migration in the host rock of a DGR for nuclear waste in Ontario by using the developed simulator. Firstly, a new thermo-hydro-mechanical-chemical (THMC) simulator (TOUGHREACT-COMSOL) has been developed to address these objectives. This simulator results from the coupling of the well-established numerical codes, TOUGHREACT and COMSOL. A series of mathematical models, which include an elastoplastic-damage model have been developed and then implemented into the simulator. Then, the predictive ability of the simulator is validated against laboratory and field tests on gas migration in host rocks. The validation results have shown that the developed simulator can predict well the gas migration in host rocks. This agreement between the predicted results and the experimental data indicates that the developed simulator can reasonably predict gas migration in DGR systems. The new simulator is used to predict gas migration and its effects in a potential DGR site in Ontario. Valuable results regarding gas migration in a potential DGR located in Ontario have been obtained. The research conducted in this Ph.D. study will provide a useful tool and information for the understanding and prediction of gas migration and its effect in a DGR, particularly in Ontario.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/43659
Date27 May 2022
CreatorsWei, Xue
ContributorsFall, Mamadou
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0029 seconds