Return to search

Precise control of quantum information

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 2002. / Includes bibliographical references (p. 93-101). / Theoretical discoveries in the nascent field of quantum information processing hold great promise, suggesting the means for increased computational power and unconditionally secure communications. To achieve these advances in practice, however, quantum information must be stored and manipulated with high fidelity. Here, we describe how quantum information stored in a nuclear spin system can be controlled accurately. We describe a method creating strongly-modulating single-spin gates that faithfully produce the desired unitary transformations. The simulated fidelity of the best gate (under ideal conditions) reaches close to 0.99999, a value close to estimates of the fault-tolerant threshold. In addition, we show how knowledge of experimental errors can be used correct or compensate the gates. The experimental demonstration of these methods yields estimated single-spin and coupling gate fidelities close to 0.99. The methods are applicable to a variety of experimental studies in quantum information processing. We used the gates to implement strategies for combating decoherence, including the realization of a noiseless subsystem and the concatenation of quantum error correction with dynamical decoupling. The gates were also used to demonstrate the quantum Fourier transform, the disentanglement eraser, and an entanglement swap. Finally, we describe a nuclear magnetic resonance (NMR) implementation of a quantum lattice gas (QLG) algorithm. Recently, it has been suggested that an array of small quantum information processors sharing classical information can be used to solve selected computational problems. The concrete implementation demonstrated here solves the diffusion equation, and it provides a test example from which to / (cont.) probe the strengths and limitations of this new computation paradigm. The NMR experiment consists of encoding a mass density onto an array of 16 two-qubit quantum information processors and then following the computation through 7 time steps of the algorithm. The results show good agreement with the analytic solution for diffusive dynamics. / by Marco Antonio Pravia. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/29999
Date January 2002
CreatorsPravia, Marco Antonio (Pravia Hernandez), 1975-
ContributorsDavid G. Cory., Massachusetts Institute of Technology. Dept. of Nuclear Engineering., Massachusetts Institute of Technology. Department of Nuclear Engineering, Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format101 p., 4985582 bytes, 4985387 bytes, application/pdf, application/pdf, application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0017 seconds