Return to search

Phenomenological and semi-phenomenological models of nano-particles freezing

Studies of nucleation in freezing nanoparticles usually assume that the embryo of the solid phase is completely wet by the liquid and forms in the core of the droplet. However, recent experiments and computer simulations have suggested that some nanoparticles start nucleating at the liquid-vapor interface of the drop in a pseudoheterogeneous process. The goal of the present work is to propose phenomenological models suitable for the study of surface nucleation in nanoparticle systems that can be used to understand the contributions of the various surface phenomena, such as surface and line tensions, to the nucleation barrier.<p/>
The nucleation barrier for the freezing of a 276 atom gold cluster is calculated using Monte Carlo simulation techniques while previous simulation studies of a 456 atom gold cluster are extended in order to find the probability that the embryo forms in the surface or core of the nanoparticle. These calculations confirm that the crystal embryo forms at the liquid-vapor interface. Geometric studies measuring the liquid-solid and solid-vapor surface areas of the embryo suggest that it changes shape as it becomes larger and grows in towards the core of the droplet.<p/>
Three phenomenological models that are based on the capillarity approximation and can account for surface nucleation are proposed. These models highlight the importance of accounting for the surface curvature contributions related to the Tolman length and the presence of the three phase contact line in calculating the nucleation free energy barrier. In some cases, the models are able to reproduce the qualitative properties of the free energy barriers obtain from simulation but numerical fits of the models generally result in estimates of the solid-liquid surface tension that are lower than the values expected on the basis of partial wetting in the bulk.<p/>
Finally, a semi-phenomenological model approach to nucleation is proposed where the usual phenomenological expression for the free energy barrier is retained, but where the geometric prefactors are obtained from molecular simulation of the embryo. This method is applied to nucleation in the gold cluster and to the freezing of a bulk Lennard-Jones liquid.<p/>

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-12152009-171958
Date22 December 2009
CreatorsAsuquo, Cletus
ContributorsBowles, Richard, Bradley, Michael, Burgess, Ian, Baranski, Andrzej
PublisherUniversity of Saskatchewan
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-12152009-171958/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0023 seconds