Return to search

Caenorhabditis elegans un modèle d’étude des différents compartiments du noyau : de l’étude d’un stress du nucléole par inhibition de la voie de neddylation à la mesure de la compaction de la chromatine in vivo / Caenorhabditis elegans, a model to study the nucleus compartments : from the nucleolar stress by neddylation pathway inhibition to the nanoscale chromatin compaction measurements in vivo

NEDD8, molécule de la famille de l’ubiquitine est essentielle au développement, à la croissance et à la viabilité d’un organisme, de plus c’est une cible prometteuse en thérapeutique. Nous avons découvert que l’inhibiteur spécifique de la NEDDylation, MLN4924 altère la morphologie sans fragmentation et augmente la surface du nucléole de cellules humaines et de noyaux de la lignée germinale de Caenorhabditis elegans. Une approche de protéomique quantitative (SILAC) combiné à l’analyse de la production des ARNr et des ribosomes montrent que MLN4924 change la composition protéique du nucléole sans affecter l’activité transcriptionnelle de l’ARN pol I. Notre analyse montre que MLN4924 active p53 par la voie RPL11/RPL5-Mdm2 caractéristique d’un stress du nucléole. Cette étude identifie le nucléole comme une cible intéressante dans l’utilisation d’inhibiteurs de la NEDDylation et apporte un nouveau mécanisme d’activation de p53 par inhibition de la voie NEDD8.Dans une seconde étude nous avons adapté la méthode de FLIM-FRET (« Fluorescence Lifetime Imaging Microscopy – Förster Resonance Energy Transfer ») à l’étude de la compaction de la chromatine à l’échelle du nanomètre dans un organisme vivant. Le nématode Caenorhabditis elegans s’est révélé être un modèle de choix. Au sein des chromosomes méiotiques, nous avons identifié différentes régions de compaction, de niveau variable par mesure du FRET entre histones fusionnées à des protéines fluorescentes. Par une approche originale d’ARN interférence et injection d’un « extra-chromosome » nous avons défini l’architecture à une nano-échelle de différents états de l’hétérochromatine et montré que cette organisation est contrôlée par les protéines HP1 « Heterochromatin Protein 1 » et SETDB1, une protéine « H3-Lysine 9 methyl transferase ». Nous avons également montré que la compaction de l’hétérochromatine est dépendante des condensines I et II et plus particulièrement la condensine I contrôle l’état faiblement compacté de la chromatine.Nos travaux ont confirmé que C. elegans est un modèle d’intérêt majeur pour l’étude des compartiments nucléaires et parfaitement adapté pour des études pré-clinique. / The ubiquitin-like molecule NEDD8 is conserved and essential for viability, growth and development; its activation pathway is a promising target for therapeutic intervention. We found that the small molecule inhibitor of NEDDylation, MLN4924, alters the morphology and increases the surface size of the nucleolus in human cells and Caenorhabditis elegans germ cells in the absence of nucleolar fragmentation. Through SILAC proteomic analysis and rRNA production, processing and ribosome profiling, we show that MLN4924 changes the composition of the nucleolar proteome but does not inhibit RNA Pol I transcription. Further analysis demonstrates that MLN4924 activates the p53 tumour suppressor through the RPL11/RPL5-Mdm2 pathway, with characteristics of nucleolar stress. The study identifies the nucleolus as a target of the NEDDylation pathway and provides a mechanism for p53 activation upon NEDD8 inhibition.Then we adapted a quantitative FRET (Förster resonance energy transfer)-based fluorescence lifetime imaging microscopy (FLIM) approach to assay the nano-scale chromatin compaction in a living organism, the nematode Caenorhabditis elegans. By measuring FRET between histone-tagged fluorescent proteins, we visualized distinct chromosomal regions and quantified the different levels of nanoscale compaction in meiotic cells. Using RNAi and repetitive extrachromosomal array approaches, we defined the heterochromatin state and showed that its architecture presents a nanoscale-compacted organization controlled by Heterochromatin Protein-1 (HP1) and SETDB1 H3-lysine-9 methyl-transferase homologs in vivo. Next, we functionally explored condensin complexes. We found that condensin I and condensin II are essential for heterochromatin compaction and that condensin I additionally controls lowly compacted regions. Our data show that, in living animals, nanoscale chromatin compaction is controlled not only by histone modifiers and readers but also by condensin complexes.We confirm that C. elegans is an interesting model to study nuclear signalling and perfectly adapt to be a platform for pre-clinical studies.

Identiferoai:union.ndltd.org:theses.fr/2018MONTT049
Date13 November 2018
CreatorsPerrin, Aurélien
ContributorsMontpellier, Xirodimas, Dimitris
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0016 seconds