The minimum energy paths and transition states for the first two pyrolysis reactions of the tannin building blocks gallic acid and (+)-catechin were calculated by combining density functional theory with the climbing-image nudged elastic band method. For both investigated, the combined pyrolysis reaction was found to be endothermic across the full investigated temperature range and exergonic for temperatures of 1000 K and above when evaluated with the quantum chemical 'gold standard' approach CCSD(T). In the case of gallic acid, the dehydrogenation of pyrogallol was identified as the rate-determining pyrolysis step, whereas the catechol split-off was determined to be the rate-determining step of (+)-catechin pyrolysis. Additionally, simulated Raman spectra were able to explain the presence of subtle shoulder peaks in the spectrum of the binder Carbores®P. Another series of spectra assisted the identification of an ellagic acid pyrolysis product.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:86025 |
Date | 12 July 2023 |
Creators | Kraus, Jakob |
Contributors | Kortus, Jens, Knupfer, Martin, Technische Universität Bergakademie Freiberg |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds