Yes / The quasi-orthogonal space time block coding (QO-STBC) over orthogonal frequency division multiplexing (OFDM) is investigated. Traditionally, QO-STBC does not achieve full diversity since the detection matrix of QO-STBC scheme is not a diagonal matrix. In STBC, the decoding matrix is a diagonal matrix which enables linear decoding whereas the decoding matrix in traditional QO-STBC does not enable linear decoding. In this paper it is shown that there are some interfering terms in terms of non-diagonal elements that result from the decoding process which limit the linear decoding. As a result, interference from the application of the QO-STBC decoding matrix depletes the performance of the scheme such that full diversity is not attained. A method of eliminating this interference in QO-STBC is investigated by nulling the interfering terms towards full diversity for an OFDM system. It was found that the interference reduction technique permits circa 2dB BER performance gain in QO-STBC. The theoretical and simulation results are presented, for both traditional QO-STBC and interference-free QO-STBC applying OFDM
Identifer | oai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/9608 |
Date | January 2013 |
Creators | Anoh, Kelvin O.O., Abd-Alhameed, Raed, Dama, Yousef A.S., Jones, Steven M.R., Ghazaany, Tahereh S., Rodriguez, Jonathan, Voudouris, Konstantinos N. |
Source Sets | Bradford Scholars |
Language | English |
Detected Language | English |
Type | Article, Published version |
Rights | (c) 2013 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0/), CC-BY |
Page generated in 0.0016 seconds