In this paper we propose an unsupervised voting-merging scheme that is capable of clustering data sets, and also of finding the number of clusters existing in them. The voting part of the algorithm allows us to combine several runs of clustering algorithms resulting in a common partition. This helps us to overcome instabilities of the clustering algorithms and to improve the ability to find structures in a data set. Moreover, we develop a strategy to understand, analyze and interpret these results. In the second part of the scheme, a merging procedure starts on the clusters resulting by voting, in order to find the number of clusters in the data set. / Series: Working Papers SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
Identifer | oai:union.ndltd.org:VIENNA/oai:epub.wu-wien.ac.at:epub-wu-01_18a |
Date | January 1999 |
Creators | Dimitriadou, Evgenia, Weingessel, Andreas, Hornik, Kurt |
Publisher | SFB Adaptive Information Systems and Modelling in Economics and Management Science, WU Vienna University of Economics and Business |
Source Sets | Wirtschaftsuniversität Wien |
Language | English |
Detected Language | English |
Type | Paper, NonPeerReviewed |
Format | application/pdf |
Relation | http://epub.wu.ac.at/94/ |
Page generated in 0.005 seconds