Return to search

Numerical Simulation of Environmental Flow over Urban Landscape for Applications to Renewable Energy

abstract: Development of renewable energy solutions has become a major interest among environmental organizations and governments around the world due to an increase in energy consumption and global warming. One fast growing renewable energy solution is the application of wind energy in cities. To qualitative and quantitative predict wind turbine performance in urban areas, CFD simulation is performed on real-life urban geometry and wind velocity profiles are evaluated. Two geometries in Arizona is selected in this thesis to demonstrate the influence of building heights; one of the simulation models, ASU campus, is relatively low rise and without significant tall buildings; the other model, the downtown phoenix model, are high-rise and with greater building height difference. The content of this thesis focuses on using RANS computational fluid dynamics approach to simulate wind acceleration phenomenon in two complex geometries, ASU campus and Phoenix downtown model. Additionally, acceleration ratio and locations are predicted, the results are then used to calculate the best location for small wind turbine installments. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2015

Identiferoai:union.ndltd.org:asu.edu/item:30036
Date January 2015
ContributorsYing, Xiaoyan (Author), Huang, Huei-Ping (Advisor), Peet, Yulia (Committee member), Herrmann, Marcus (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeMasters Thesis
Format73 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0019 seconds