Return to search

Modeling the Evolution of Galaxy Properties across Cosmic Time with Numerical Simulations

We present a series of numerical galaxy formation studies which apply new numerical methods to produce increasingly realistic galaxy formation models. We first investigate the metallicity evolution of a large set of idealized hydrodynamical galaxy merger simulations of colliding galaxies. We find that inflows of metal--poor interstellar gas triggered by galaxy tidal interactions can account for the systematically lower central oxygen abundances observed in local interacting galaxies. We show the central metallicity evolution during merger events is determined by a competition between the inflow of low--metallicity gas and enrichment from star formation. We find a time-averaged depression in the galactic nuclear metallicity of ~0.07 dex for gas--poor disk--disk interactions, which explains the observed close pair mass-metallicity and separation-metallicity relationships. / Astronomy

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/12274604
Date06 June 2014
CreatorsTorrey, Paul A
ContributorsHernquist, Lars Eric
PublisherHarvard University
Source SetsHarvard University
Languageen_US
Detected LanguageEnglish
TypeThesis or Dissertation
Rightsopen

Page generated in 0.0023 seconds