Return to search

Numerical simulation of the hydraulic performances and flow pattern of swallow-tailed flip bucket

Yes / In this study, the evolution process of the swallow-tailed flip bucket water nappe entering into the plunge pool is simulated by using the standard 𝑘-𝜀 turbulence model and the volume of fluid method. The effects of the upstream opening width ratio and downstream bucket angle on the flow pattern, the unit discharge distribution and the impact pressure distribution are studied. Based on the numerical results, the inner and outer jet trajectories are proposed by using the data. Results show that the longitudinal stretching length decreases with the increase of the upstream opening width ratio, and increases with the increase of the downstream bucket angle. The water nappe enters the plunge pool in a long strip shape. Thus, the unit discharge distribution of water nappe entry is consistent with the pressure distribution at the plunge pool bottom. The upstream opening width ratio and downstream bucket angle should be chosen as their intermediate values in order to have a uniform discharge distribution and to reduce the pressure peak at the plunge pool floor, which is effectively to avoid instability and destruction of plunge pool floor. / National Science Fund for Distinguished Young Scholars (No. 51625901) and National Nature Science Foundation of China (No: 51579165).

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/17839
Date20 April 2020
CreatorsZhang, L., Zhang, J., Guo, Yakun, Peng, Y.
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeArticle, Published version
Rights(c) 2020 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0/)

Page generated in 0.0022 seconds