Return to search

An Analysis of On-Axis Rotation Pin-on-Disc Tribometry and its Correlation to Friction in Metal Cutting

In metal cutting applications, development of coatings to reduce friction between tool and chip and also enhance wear resistance of the tool is an important objective. The effectiveness of such coatings is ultimately evaluated through metal cutting trials; however, bench-scale tests can play a role in predicting some aspects of a candidate coating’s performance. This dissertation further develops the concept of an on-axis rotation pin-on-disc tribometer for the evaluation of friction coefficient between tool and work material pairs under temperature and stress conditions similar to those experienced between tool and chip in metal cutting.
Firstly, the characteristics of the imprint formed by the spherical-tipped pin in the disc during tribometer tests are studied. Specific focus is given to the growth of the imprint during the rotating stage of the test; the severity of pile-up of work material around the periphery of the imprint; different zones of contact at the imprint surface; and evidence of (or lack thereof) of bulk shear in the surrounding work material below the surface of the disc.
The importance of estimating the actual temperature at the pin-disc interface (inaccessible for direct measurement) is also raised. Evidence is presented that suggests the pin-disc interface is higher for tests involving coatings with higher electrical resistivity, despite exhibiting similar temperatures 2 mm above the interface (accessible for direct measurement). A numerical model is developed in an effort to estimate the pin-disc interface during stationary specimen tests for specific pin and disc materials under controlled conditions. An empirical relationship is also established to express the variation of electrical resistivity with temperature for cemented tungsten carbide (6% cobalt content).
Finally, coefficient of friction results for coated and uncoated cemented carbide pins in contact with AISI 1045 steel discs are related to short duration turning trials involving the same material pairs. Coatings exhibiting low friction coefficient result in appreciably lower cutting forces, reduced built-up edge intensity and more tightly curled chips. The possibility that the low thermal conductivity of such coatings could be producing similar effects by forcing more heat into the chips is also explored. / Dissertation / Doctor of Philosophy (PhD) / This dissertation further develops the concept of a pin-on-disc apparatus for evaluating the friction coefficient between materials under temperature and stress conditions similar to those experienced in metal cutting.
Firstly, characteristics of the imprint formed by the pin in the disc during tests with the apparatus are studied. Specific focus is given to the growth of the imprint during the rotating stage of the test and different zones of contact at the imprint surface.
Secondly, the importance of estimating the actual temperature at the pin-disc interface, inaccessible for direct measurement, is raised and a numerical model developed to aid in its estimation.
Finally, coefficient of friction results generated on the apparatus are correlated to the magnitude of forces measured and other observations made during metal cutting trials involving the same material pairs.

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/26639
Date January 2021
CreatorsBoyd, Jeremy
ContributorsVeldhuis, Stephen, Mechanical Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0017 seconds