This thesis is a study of anomaly detection in vehicle traffic data in central Stockholm. Anomaly detection is an important tool in the analysis of traffic data for improved urban planing. Two unsupervised machine learning models are used, the DBSCAN clustering model and the LSTM deep learning neural network. A modified version of the models is also employed, incorporating adaptations that exploit diurnal traffic variations to improve the quality of the results. Subsequently, the model performance is analysed and compared. For evaluating the models, we employed two types of synthetic anomalies: a straightforward one and a more complex variant. The results indicate that all models show some ability to detect both anomalies. The models show better performance on the simpler anomaly, with both LSTM and DBSCAN giving comparable results. In contrast, LSTM outperforms DBSCAN on the more complex anomaly. Notably, the modified versions of both models consistently show enhanced performance. This suggest that LSTM outperforms DBSCAN as anomalies become more complex, presumably owing to LSTM’s proficiency in identifying intricate patterns. However, this relationship warrants further investigation in future research. / Denna examensuppsats behandlar anomalidetektering i fordonstrafikdata i centrala Stockholm. Anomalidetektering är ett viktigt verktyg vid analys av trafikdata för förbättrad stadsplanering. Två oövervakade maskininlärningsmodeller används, klustringsmodellen DBSCAN och djupinlärande neurala nätverket LSTM. En modifierad version av modellerna appliceras även, denna modifikation innebär anpassningar som utnyttjar dagliga traffikvariationer för att förbättra kvaliteten på resultatet. Modellerna analyseras och dess prestanda jämförs. För att utvärdera modellerna användes två typer av syntetiska anomalier: en enkel och en mer komplex anomali. Resultaten visar på en förmåga hos modellerna att upptäcka båda anomalierna. Modellerna uppvisar en bättre prestanda på den enklare anomalin, där LSTM och DBSCAN ger jämförbara resultat. För den mer komplexa anomalin så ger LSTM bättre resultat än DBSCAN. De modifierade versionerna av båda modellerna genererade konsekvent bättre resultat än den mer konventionella tillämpningen. Resultatet tyder på att LSTM överträffar DBSCAN när anomalierna blir mer komplexa, detta på grund av LSTMs skicklighet i att identifiera icke triviala mönster. Detta kräver dock ytterligare undersökningar i framtida forskning.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-344445 |
Date | January 2023 |
Creators | Hellström, Vilma |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2023:946 |
Page generated in 0.0018 seconds