Return to search

Efficacy of fungicides on coexisting Leptophaeria spp. causing phoma stem canker on winter oilseed rape

Phoma stem canker is a disease of oilseed rape (Brassica napus) caused by closely related plant pathogens Leptosphaeria maculans and L. biglobosa. It is an economically important disease, causing annual yield losses of approximately £770 million worldwide. When colonising oilseed rape, L. maculans and L. biglobosa exist in close proximity on the leaf, competing for resources as they move through the main leaf vein and into the stem. Fungicides are commonly used to decrease severity of phoma stem canker on oilseed rape. However, the efficacy and longevity of active chemicals is under threat from evolution of resistance in pathogen populations and government legalisation. Moreover, it has been suggested that both L. maculans and L. biglobosa differ in their sensitivity to azoles, and important class of fungicides that are used to control the disease through the inhibition of lanosterol 14-α demethylase (erg11, CYP51). This project aims to further understand the role that fungicides have in controlling phoma stem canker by investigating their efficacy against L. maculans and L. biglobosa in crops, in vitro and in planta. In field experiments, established in Cambridgeshire across four cropping seasons, the fungicide mixture penthiopyrad (SDHI) plus picoxystrobin (QoI) was as effective at controlling phoma leaf spotting and phoma stem canker in winter oilseed rape as prothioconazole (DMI), suggesting that both fungicides could be used to reduce phoma stem canker symptoms. The two pathogens differed in their growth rates in vitro, with L. biglobosa growing faster than L. maculans when untreated or treated with lower fungicide concentrations. Fungicide sensitivity assays suggest that L. maculans and L. biglobosa are both sensitive to DMI, SDHI and QoI fungicides and that differences between the species are minor. Prothioconazole and penthiopyrad + picoxystrobin had a similar efficacy on oilseed rape cotyledons colonised with either L. maculans or L. biglobosa. There was no difference between species on prothioconazole treated plants, although there was a difference between L. maculans and L. biglobosa when treated with 20 μg/ml penthiopyrad + picoxystrobin. Heterologous yeast expression of LmCYP51B and LbCYP51B with fungicide sensitivity testing of the yeast transformants suggests that LmCYP51B and LbCYP51B are similarly sensitive to azole fungicides flusilazole, prothioconazole-desthio and tebuconazole. These findings are supported by homology protein modelling, which predicts that LmCYP51B and LbCYP51B are structurally very similar, specifically at the azole-binding site. In conclusion, fungicides are still an effective control method for reducing phoma stem canker symptoms caused by Leptosphaeria species in the UK, and a useful tool to in the sustainable production of oilseed rape.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:721473
Date January 2017
CreatorsSewell, Thomas Richard
PublisherUniversity of Hertfordshire
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/2299/18990

Page generated in 0.0019 seconds