Shen, Dong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (p. 98-106). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.iv / Acknowledgements --- p.v / Table of Contents --- p.vi / Chapter Chapter 1 --- Background --- p.1 / Chapter 1.1 --- Translucent Optical Networks --- p.1 / Chapter 1.1.1 --- The Way Towards Translucent --- p.1 / Chapter 1.1.2 --- Translucent Optical Network Architecture Design and Planning --- p.3 / Chapter 1.1.3 --- Other Research Topics in Translucent Optical Networks --- p.6 / Chapter 1.2 --- Fault Monitoring in All-Optical Networks --- p.12 / Chapter 1.2.1 --- Fault Monitoring in Network Layer's Perspective --- p.12 / Chapter 1.2.2 --- Passive Optical Monitoring --- p.14 / Chapter 1.2.3 --- Proactive Optical Monitoring --- p.16 / Chapter 1.3 --- Contributions --- p.17 / Chapter 1.3.1 --- Translucent Optical Network Planning with Heterogeneous Modulation Formats --- p.17 / Chapter 1.3.2 --- Multiplexing Optimization in Translucent Optical Networks --- p.19 / Chapter 1.3.3 --- An Efficient Regenerator Placement and Wavelength Assignment Scheme in Translucent Optical Networks --- p.20 / Chapter 1.3.4 --- Adaptive Fault Monitoring in All-Optical Networks Utilizing Real-Time Data Traffic --- p.20 / Chapter 1.4 --- Organization of Thesis --- p.22 / Chapter Chapter 2 --- Regenerator Placement and Resource Allocation Optimization in Translucent Optical Networks --- p.23 / Chapter 2.1 --- Introduction --- p.23 / Chapter 2.2 --- Translucent Optical Network Planning with Heterogeneous Modulation Formats --- p.25 / Chapter 2.2.1 --- Motivation and Problem Statements --- p.25 / Chapter 2.2.2 --- A Two-Step Planning Algorithm Using Two Modulation Formats to Realize Any-to-Any Topology Connectivity --- p.28 / Chapter 2.2.3 --- Illustrative Examples --- p.30 / Chapter 2.2.3 --- ILP Formulation of Minimizing Translucent Optical Network Cost with Two Modulation Formats under Static Traffic Demands --- p.34 / Chapter 2.2.4 --- Illustrative Numeric Examples --- p.42 / Chapter 2.3 --- Resource Allocation Optimization in Translucent Optical Networks --- p.45 / Chapter 2.3.1 --- Multiplexing Optimization with Auxiliary Graph --- p.45 / Chapter 2.3.2 --- Simulation Study of Proposed Algorithm --- p.51 / Chapter 2.3.3 --- An Efficient Regenerator Placement and Wavelength Assignment Solution --- p.55 / Chapter 2.3.4 --- Simulation Study of Proposed Algorithm --- p.60 / Chapter 2.4 --- Summary --- p.64 / Chapter Chapter 3 --- Adaptive Fault Monitoring in All-Optical Networks Utilizing Real-Time Data Traffic --- p.65 / Chapter 3.1 --- Introduction --- p.65 / Chapter 3.2 --- Adaptive Fault Monitoring --- p.68 / Chapter 3.2.1 --- System Framework --- p.68 / Chapter 3.2.2 --- Phase 1: Passive Monitoring --- p.70 / Chapter 3.2.3 --- Phase 2: Proactive Probing --- p.71 / Chapter 3.2.4 --- Control Plane Design and Analysis --- p.80 / Chapter 3.2.5 --- Physical Layer Implementation and Suggestions --- p.83 / Chapter 3.3 --- Placement of Label Monitors --- p.83 / Chapter 3.3.1 --- ILP Formulation --- p.84 / Chapter 3.3.2 --- Simulation Studies --- p.86 / Chapter 3.3.3 --- Discussion of Topology Evolution Adaptiveness --- p.93 / Chapter 3.4 --- Summary --- p.95 / Chapter Chapter 4 --- Conclusions and Future Work --- p.95 / Chapter 4.1 --- Conclusions --- p.96 / Chapter 4.2 --- Future Work --- p.97 / Bibliography --- p.98 / Publications during M.Phil Study --- p.105
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_327057 |
Date | January 2011 |
Contributors | Shen, Dong., Chinese University of Hong Kong Graduate School. Division of Information Engineering. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, viii, 106 p. : ill. ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0022 seconds