Return to search

Design of secondary voltage and stability controls with multiple control objectives

The purpose of the proposed research is to design a Decentralized Voltage/Stability Monitoring and Control System to counteract voltage violations and the impact of disturbances/contingencies on power system voltage stability. A decentralized voltage and stability control system is designed to coordinate the controls of the local secondary voltage control devices and necessary load shedding without requiring information about the rest of the system.
The voltage/stability control can be formulated as a multi-objective optimization problem. The control objectives include, but are not limited to: minimization of system active/reactive losses; maximization of the system stability margin; and minimization of the control actions. The constraints of the optimization problem depend on the specifications of the actual system components.
For the first time, margin sensitivities of the control actions are included in the control formulation. The concept of using margin sensitivity to evaluate the post-control load margin is presented as a fast and accurate way to assess potential voltage and stability control options. A system decomposition procedure is designed to define the disturbance-affected zone as an independent control subsystem. A normal constraint algorithm is adopted to identify the most suitable control solution in a shorter timeline than the typical utility voltage-control practice. Both steady-state and dynamic simulations are performed to compare the proposed system with typical utility control practices.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/29714
Date01 June 2009
CreatorsSong, Yang
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0018 seconds