L’obtention d'un contrôle précis sur l'interaction entre les distinctes interactions faibles parmi les blocs de construction moléculaires à travers un design supramoléculaire permet la production de nanomatériaux auto-assemblées. Il s'agit de l’accès des chimistes « bottom-up» en matière de nanoscience et nanotechnologie. L'expansion d'une telle stratégie à partir de tectons bien définis fournit des solutions en vue de la fabrication de nanoarchitectures 1D, 2D et 3D avec des propriétés ajustables à volonté. Bien que l'utilisation des forces faibles à contrôler l'auto-assemblage aie déjà attiré une grande attention, nombreux sont les défis qui restent ouverts dans ce domaine. Entre autres, nous avons concentré notre attention dans le cadre de cette thèse sur trois aspects principaux: - Le contrôle de l'auto-assemblage 2D, surtout orienté vers l’obtention d'un contrôle subtil du positionnement des unités fonctionnelles et de leur organisation, soit par rapport à le substrat, ou à les distances relatives et orientations des blocs de construction. - Élargissement de l’ auto-assemblage 2D à la troisième dimension, c'est à dire la construction d’une architecture programmée, couche par couche, d'une façon rigidement contrôlée; - Réactivité à la surface, qui, en dehors de l’attrait d’un point de vue industriel dans le développement de nouveaux catalyseur plus efficace, peut ouvrir la voie vers la synthèse de polymères conjugués 2D. Trois thèmes complémentaires, constituant l'épine dorsale de ce travail de thèse, ont été traités par la combinaison de différentes méthodes physico-chimiques, incluant la microscopie à effet tunnel, la modélisation moléculaire, de relayer sur le développement instrumental et le logiciel, respectivement. La microscopie à effet tunnel est un outil puissant d’observation des phénomènes nanométriques alors que par le biais de simulations il serait possible de parvenir à une compréhension précise et de définir les principes de conception. Le premier objectif de ce travail de thèse a été la réalisation d'un contrôle sur les forces qui régissent l’auto-assemblage bi-dimensionnel de différents éléments constitutifs; Différents systèmes ont donc été considérés, allant de synthons disponibles dans le commerce, à de rares blocs de construction personnalisés. La microscopie à effet tunnel a été utilisé pour explorer l'auto-assemblage de la première génération de dendrimères sur graphite à l'interface solide-liquide, offrant un aperçu direct sur l'effet sur les interactions supramoléculaires. Une attention particulière a également été accordée à l'étude de la concurrence entre les différents adsorbats - un polyol aromatique et une bipyridyn-pyrimidin-amine, et à la modification des motifs d’emballage lors de l'addition de sels de différents métaux, in situ, comme dans le cas d'un tecton porphyrinique fonctionnalisé. En s'appuyant sur une telle connaissance de l'auto-assemblage 2D, nous avons étendu l'ordre à l'interface solide-liquide à la troisième dimension. Cela a été accompli en concevant un bloc hétéro-aromatique tétracarboxylique acide qui est capable de former une structure bi-couches autodirigée. [...] / Achieving a subtle control over the interplay between various distinct weak interactions between molecular building blocks through a supramolecular design makes it possible the production of self-assembled nanomaterials. This is the chemists “bottom-up” approach to nanoscience and nanotechnology. Such a strategy when applied on programmed tectons provides access towards the fabrication of 1D, 2D and 3D nanoarchitectures with properties at will. Although the use of weak forces to control self-assembly attracted already a great attention1, many are the challenges which are still open in the field. In the framework of this thesis we have focused our attention to three main aspects: Control over 2D self-assembly, especially addressed to achieving a subtle control over the positioning of functional units and their organization, either with respect the substrate, or with respect to neighboring molecules.Expanding the 2D self-assembly to the third dimension, i.e. growing programmed architectures, layer by layer, in a rigidly restrained fashion; Reactivity on the surface, which besides the industrial appeal in the development of new more efficient catalyst, may pave the road towards the synthesis of 2D-conjugated thus (semi)conducting polymers as synthetic graphene-like alternatives. Three complementary topics, constituting the backbone of this thesis work, have been addressed by combining different physico-chemical methods including Scanning Tunneling Microscopy (STM), Molecular modeling relaying on instrumental and software development, respectively. Scanning tunneling Microscopy is a powerful tool to monitor nanoscale phenomena whereas through Simulations one could attain a precise understanding and define design principles.The first objective of this thesis work was to achieve a control over the forces governing the bi-dimensional self-assembly of different building blocks at surfaces and interfaces. To this end, different systems were considered, ranging from commercially available synthons, to most rare custom made building blocks. STM was employed to explore the self-assembly of the first generation of dendrimers on graphite at the solid-liquid interface2, providing direct insight into the effect on the supramolecular interactions. Particular attention was also paid to the study of the competition between different adsorbates – an aromatic polyol and a bypiridyn-pirimidin-amine, and to the modification of packing patterns upon addition of different metal salts, in-situ, as in the case of a functionalized porphyrinic tecton . Building up on such a knowledge on 2D self-assembly, we have extended to order at the solid-liquid interface to the third dimension. This was accomplished by designing and investigating a hetero-aromatic tetracarboxylic acid building block which was found to form a self-templated bi-layered structure3. The unique design principle relies on the presence of four carbonyl moieties inside the conjugated core which we were found playing different roles: (i) they represent ‘‘primary’’ recognition sites on the molecular building blocks, to promote the self-assembly into 2D porous layers, (ii) they offer a fine control of their conformational planarity, which confers the self- templating capacity, and (iii) they introduce secondary recognition sites, which mediate the interactions between the self- assembled layers. The capacity of forming 2D supramolecular architectures is a prerequisite towards their use for exploring surface reactions, thereby forming frameworks, where the weak forces responsible for the self-assembly are substituted with covalent bonds or strong metallo-ligand links, aiming to obtain infinite two dimensional conjugate network, which will likely cover a key role in the next generation of electronic materials.[...]
Identifer | oai:union.ndltd.org:theses.fr/2012STRAF071 |
Date | 17 December 2012 |
Creators | Cadeddu, Andrea |
Contributors | Strasbourg, Samorì, Paolo |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0031 seconds