The production of municipal solid waste has continued to grow in recent years. In Italy, municipal solid waste production reaches about 29 million tons per year. The organic fraction of municipal solid waste (OFMSW), which accounts for 30-40% of the total waste, usually undergoes biological treatments such as anaerobic digestion or composting, or is incinerated or landfilled. Biological treatments are considered not economically viable due to the long processing time (20-30 days), while incineration and landfilling are considered as low cost but polluting processes. In contrast, Hydrothermal Carbonization (HTC) is a cost-effective process to treat organic waste especially for the shorter processing time (0.5-8 h) and the possibility to treat directly wet heterogeneous materials.
This thesis aims to investigate the potential use of HTC to upgrade OFMSW and other biomasses to biofuels or valuable byproducts.
Chapter 1 gives an overview on the state of the art of HTC technology applied to organic wastes, focusing both on mechanisms and on the characteristics of reaction products. Chapter 2 investigates the potential use of HTC to upgrade the organic fraction of municipal solid waste (OFMSW) into biofuel and byproducts. The impact of process conditions (process time, temperature and solid load) on the formation, chemical and energy properties of hydrochar was deeply investigated. To analyze the behavior of hydrochar as a solid biofuel, the combustion (oxidation) of hydrochar and the co-firing (co-oxidation) of hydrochars and coals was also investigated. The results show that, especially at HTC harsher conditions, hydrochar is a “coal-like” material, that can be used as a valuable solid biofuel. The results evidenced that hydrochar is composed of primary char and secondary char. Primary char (non-extractable with organic solvents) has characteristics similar to coal and could be recovered for combustion, while secondary char is an amorphous and more volatile solid, easily extracted with organic solvents, which found possible application as a source of biochemicals and liquid bio-fuel.
Chapter 3 investigates the use of HTC as a promising pre-treatment to enhance the biomethane potential during anaerobic digestion of OFMSW. Anaerobic digestion experiments were carried out using the HTC process liquid and the entire HTC reaction mixtures. Results proved that, when compared to the raw OFMSW, the use of HTC liquid and HTC mixture into AD lead to an increase of biomethane production of up to 37% and 363% by volume, respectively.
Chapter 4 reports an HTC kinetics study and a kinetic model, which accounted for reactions leading to the production of primary and secondary char, as well as the liquid and gas phases. The model was optimized using experimental data performed on a lignocellulosic feedstock (olive trimmings) and validated on two other types of biomasses (grape marc and Opuntia Ficus Indica) and was used as a reliable tool to predict the carbon distribution among HTC products. In this chapter an in-depth analysis was also carried out to understand the evolution of feedstock characteristics during the heat-up transient phase before reaching the HTC set-point temperature. The results show that during heat up, the feedstock carbonized to a considerable extent at 220-250 °C. Tests clearly show evidence of the transition between thermal hydrolysis and HTC.
Chapter 5 presents a study conducted to evaluate the economic feasibility and the detailed energy and cost analyses of a hypothetical HTC plant transforming wet biomass into pelletized dry hydrochar. To achieve these goals, a model was developed on the basis of experimental results obtained previously on two other organic materials (grape marc and off-specification compost). The results show that, when operating the HTC plant with grape marc at the optimal HTC conditions (T=220 °C, t=1 h, dry biomass to water ratio=0.19), the production cost of hydrochar were determined to be 157 €/ton, competitive with the price of wood pellets (150-200 €/ton). This makes HTC a promising process for a large development at the industrial scale.
Identifer | oai:union.ndltd.org:unitn.it/oai:iris.unitn.it:11572/264958 |
Date | 28 May 2020 |
Creators | Lucian, Michela |
Contributors | Lucian, Michela, Fiori, Luca |
Publisher | Università degli studi di Trento, place:Trento |
Source Sets | Università di Trento |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Relation | firstpage:1, lastpage:190, numberofpages:190 |
Page generated in 0.0023 seconds