Return to search

Optimisation des mémoires résistives OxRAM à base d’oxydes métalliques pour intégration comme mémoires embarquées dans un nœud technologique CMOS avancé / Optimization of the Oxide-Resistive RAM technology in view of its applications as embedded memories in advanced CMOS nodes

La portabilité des mémoires Flash embarquées sur les nœuds CMOS technologiques avancés tel que le 28nm pose de nombreux problèmes de compatibilité avec les nouvelles étapes de fabrication telles que le diélectrique de grille haute permittivité, l’utilisation de grille métallique, les stresseurs et tenseurs utilisés pour piloter la performance du transistor élémentaire. L’ajout d’un dispositif à double grille classique tel que celui de la Flash apparait comme très couteux en termes de nombre de masques et d’étapes de fabrication additionnelles. De nombreuses alternatives ont vu le jour : les mémoires à changement de phase, les mémoires magnétiques et les mémoires resistives. Ce dernier type de mémoire est particulièrement attrayant pour une intégration en tant que mémoire « embarquée » sur technologie CMOS. Les matériaux utilisés (diélectrique à base d’oxyde métallique tel que le HfO₂ ou le Ta₂O₅) sont compatibles avec le procédé de fabrication CMOS comparés à ceux utilisés pour les mémoires magnétiques (risques de contamination). Les mémoires résistives sont par ailleurs basées sur une conduction filamentaire qui s’avère également particulièrement économe en énergie et adaptée aux faibles géométries quand elles sont comparées aux mémoires à changement de phase (changement d’état volumique du matériau). De nombreux industriels ont focalisé leurs efforts sur les matériaux de type HfO₂ et Ta₂O₅. Le sujet proposé fait suite à trois années de collaboration intensive entre ST Microelectronics et le CEA-LETI qui ont permis d’établir les bases d’un cellule mémoire de type Oxram fonctionnelle et facilement intégrable facilement sur une technologie CMOS. Il aura pour objectifs d’analyser les paramètres responsables des instabilités des états résistifs observés et de rechercher les différents moyens susceptibles de mieux contrôler la dispersion de ces états. Les études réalisées pourront porter sur les matériaux (diélectrique et électrodes), la technologie mise en œuvre, les conditions électriques de formation du filament [20]. La consolidation du choix du matériau et l’analyse des modes de défaillance et de la fiabilité du plan mémoire feront également partie du travail de cette première année. Ce travail sera orienté par les résultats statistiques obtenus par le biais de test à plus grande échelle (circuit de plusieurs Kbits). / Embedded Flash memories integration on advanced CMOS technological nodes such as the 28nm leads to serious compatibility problems with the new manufacturing steps such as the high-permittivity gate dielectric, the use of metal gate, etc. The addition of a conventional double-grid device such as the one for Flash appears to be very expensive in terms of number of masks and additional manufacturing steps. Many alternatives have emerged: phase change memories PCRAM, magnetic memories MRAM and resistive memories OxRAM. However, the high programming current of the PCRAM memories and the risks associated to the contamination of the materials used for the MRAM memories represent the weak points of these technologies. On the other hand, OxRAM memories are particularly attractive for integration as CMOS embedded memory. The materials used (metal oxide dielectric such as HfO₂ or Ta₂O₅) compatible with the CMOS manufacturing process and their low programming voltages due to filament conduction are an advantage for OxRAM memories.In this thesis, an in depth memory stack optimization is done to make up the OxRAM memory cell in order to be integrated into a matrix of memories. Thus, various top and bottom electrodes and various switching oxides have been studied in order to better control and improve the variability of the resistive states of the OxRAM memory cell. An evaluation of the reliability and the main memory performances in terms of Forming voltage, memory window, endurance and thermal stability were performed for each memory stack through electrical characterizations. These assessments highlighted efficient memory stacks which have been integrated into a 16Kb demonstrator. Finally, a study of the variability of the resistive states as well as their degradation mechanisms during the endurance and thermal stability were carried out through simples models and atomistic simulations (ab-initio calculations).

Identiferoai:union.ndltd.org:theses.fr/2017GREAT052
Date22 June 2017
CreatorsAzzaz, Mourad
ContributorsGrenoble Alpes, Fenouillet-Béranger, Claire
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds