Object detection utilizing frequency modulated continuous wave radar is becoming increasingly popular in the field of autonomous vehicles. Radar does not possess the same drawbacks seen by other emission-based sensors such as LiDAR, primarily the degradation or loss of return signals due to weather conditions such as rain or snow. Thus, there is a necessity for fully autonomous systems to utilize radar sensing applications in downstream decision-making tasks, generally handled by deep learning algorithms. Commonly, three transformations have been used to form range-azimuth-Doppler cubes in which deep learning algorithms could perform object detection. This method has drawbacks, specifically the pre-processing costs associated with performing multiple Fourier Transforms and normalization. We develop a network utilizing raw radar analog-to-digital converter output capable of operating in near real-time given the removal of all pre-processing. We obtain inference time estimates one-fifth of the traditional range-Doppler pipeline, decreasing from $\SI{156}{\milli\second}$ to $\SI{30}{\milli\second}$, and similar decreases in comparison to the full range-azimuth-Doppler cube. Moreover, we introduce hierarchical Swin Vision transformers to the field of radar object detection and show their capability to operate on inputs varying in pre-processing, along with different radar configurations, \textit{i.e.}, relatively low and high numbers of transmitters and receivers. Our network increases both average recall, and mean intersection over union performance by $\sim 6-7\%$, obtaining state-of-the-art F1 scores as a result on high-definition radar. On low-definition radar, we note an increase in mean average precision of $\sim 2.5\%$ over state-of-the-art range-Doppler networks when raw analog-to-digital converter data is used, and a $\sim5\%$ increase over networks using the full range-azimuth-Doppler cube.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/45288 |
Date | 15 August 2023 |
Creators | Giroux, James |
Contributors | Bouchard, Martin, Laganière, Robert |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | Attribution 4.0 International, http://creativecommons.org/licenses/by/4.0/ |
Page generated in 0.1795 seconds