Return to search

Evaluation of Multiple Object Tracking in Surveillance Video

Multiple object tracking is the process of assigning unique and consistent identities to objects throughout a video sequence. A popular approach to multiple object tracking, and object tracking in general, is to use a method called tracking-by-detection. Tracking-by-detection is a two-stage procedure: an object detection algorithm first detects objects in a frame, these objects are then associated with already tracked objects by a tracking algorithm. One of the main concerns of this thesis is to investigate how different object detection algorithms perform on surveillance video supplied by National Forensic Centre. The thesis then goes on to explore how the stand-alone alone performance of the object detection algorithm correlates with overall performance of a tracking-by-detection system. Finally, the thesis investigates how the use of visual descriptors in the tracking stage of a tracking-by-detection system effects performance.  Results presented in this thesis suggest that the capacity of the object detection algorithm is highly indicative of the overall performance of the tracking-by-detection system. Further, this thesis also shows how the use of visual descriptors in the tracking stage can reduce the number of identity switches and thereby increase performance of the whole system.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-157666
Date January 2019
CreatorsNyström, Axel
PublisherLinköpings universitet, Datorseende
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0013 seconds