Return to search

Moving Object Identification And Event Recognition In Video Surveillamce Systems

This thesis is devoted to the problems of defining and developing the basic building blocks of an automated surveillance system. As its initial step, a background-modeling algorithm is described for segmenting moving objects from the background, which is capable of adapting to dynamic scene conditions, as well as determining shadows of the moving objects. After obtaining binary silhouettes for targets, object association between consecutive frames is achieved by a hypothesis-based tracking method. Both of these tasks provide basic information for higher-level processing, such as activity analysis and object identification. In order to recognize the nature of an event occurring in a scene, hidden Markov models (HMM) are utilized. For this aim, object trajectories, which are obtained through a successful track, are written as a sequence of flow vectors that capture the details of instantaneous velocity and location information. HMMs are trained with sequences obtained from usual motion patterns and abnormality is detected by measuring the distance to these models. Finally, MPEG-7 visual descriptors are utilized in a regional manner for object identification. Color structure and homogeneous texture parameters of the independently moving objects are extracted and classifiers, such as Support Vector Machine (SVM) and Bayesian plug-in (Mahalanobis distance), are utilized to test the performance of the proposed person identification mechanism. The simulation results with all the above building blocks give promising results, indicating the possibility of constructing a fully automated surveillance system for the future.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12606294/index.pdf
Date01 August 2005
CreatorsOrten, Burkay Birant
ContributorsAlatan, Aydin
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0018 seconds