Return to search

Color And Shape Based Traffic Sign Detection

In this thesis, detection of traffic signs is studied. Since, both color and shape
properties of traffic signs are distinctive / these two properties have been employed
for detection.
Detection using color properties is studied in two different color domains in order to
examine and compare the advantages and the disadvantages of these domains for
detection purposes.
In addition to their color information, shape information is also employed for
detection purpose. Edge information (obtained by using the Sobel Operator) of the
images/frames is considered as search domain to find triangular, rectangular,
octagonal and circular traffic signs.
In order to improve the performance of detection process a joint implementation of
shape and color based algorithms is utilized. Two different methods have been used
v
in order to combine these two features. Both of the algorithms help reducing the
number of pixels to check whether they belong to a sign or not. This, of course,
reduces the processing time of detection process.
Each utilized algorithm is tested and compared with the others by using both static
images from different sources and video streams. Images having adverse properties
are used in order to state algorithms response for some specific conditions such as
bad illumination and shadow. After implementation, results show that joint
implementation of the color and shape based detection algorithms produces more
accurate results. Moreover, joint implementation reduces the processing time of the
detection process when compared to application of algorithms individually since it
diminishes the search domain.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12610162/index.pdf
Date01 December 2008
CreatorsUlay, Emre
ContributorsBozdagi Akar, Gozde
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0035 seconds