The quality and efficient processing of increasing amount of multimedia data is nowadays becoming increasingly needed to obtain some knowledge of this data. The thesis deals with a research, implementation, optimization and the experimental verification of automatic machine learning methods for multimedia data analysis. Created approach achieves higher accuracy in comparison with common methods, when applied on selected examples. Selected results were published in journals with impact factor [1, 2]. For these reasons special parallel computing methods were created in this work. These methods use massively parallel hardware to save electric energy and computing time and for achieving better result while solving problems. Computations which usually take days can be computed in minutes using new optimized methods. The functionality of created methods was verified on selected problems: artery detection from ultrasound images with further classifying of artery disease, the buildings detection from aerial images for obtaining geographical coordinates, the detection of materials contained in meteorite from CT images, the processing of huge databases of structured data, the classification of metallurgical materials with using laser induced breakdown spectroscopy and the automatic classification of emotions from texts.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:256538 |
Date | January 2016 |
Creators | Mašek, Jan |
Contributors | Chromý, Erik, Vozňák, Miroslav, Burget, Radim |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0283 seconds