Return to search

Development of a PC-Based Object-Oriented Real-Time Robotics Controller

The industrial world of robotics requires leading-edge controllers to match the speed of new manipulators. At the University of Waterloo, a three degree-of-freedom ultra high-speed cable-based robot was created called Deltabot. In order to improve the performance of the Deltabot, a new controller called the QNX Multi-Axis Robotic Controller (QMARC) was developed. QMARC is a PC-based controller built for the replacement of the existing commercial controller called PMAC, manufactured by Delta Tau Data Systems. Although the PMAC has its own real-time processor, the rigid and complex internal structure of the PMAC makes it difficult to apply advanced control algorithms and interpolation methods. Adding unconventional hardware to PMAC, such as a camera and vision system is also quite challenging. With the development of QMARC, the flexibility issue of the controller is resolved. QMARC?s open-sourced object-oriented software structure allows the addition of new control and interpolation techniques as required. In addition, the software structure of the main Controller process is decoupled for the hardware, so that any hardware change does not affect the main controller, just the hardware drivers. QMARC is also equipped with a user-friendly graphical user interface, and many safety protocols to make it a safe and easy-to-use system. <br /><br /> Experimental tests has proven QMARC to be a safe and reliable controller. The stable software foundation created by the QMARC will allow for future development of the controller as research on the Deltabot progresses.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OWTU.10012/836
Date January 2005
CreatorsTran, Hang
PublisherUniversity of Waterloo
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
RightsCopyright: 2005, Tran, Hang. All rights reserved.

Page generated in 0.0023 seconds