Return to search

Multi-object tracking with camera

Memoria para optar al título de Ingeniero Civil Eléctrico / En este trabajo se evaluarán distintos algoritmos de trackeo para el problema de seguimiento de peatones, donde teniendo un video obtenido de una camara de seguridad, nos interesa reconocer correctamente cada individuo a traves del tiempo, buscando minimizar la cantindad de etiquetas mal asignadas y objetos (peatones) no identificados.
Para esto se ocuparán algorimos basados en el concepto de Conjuntos Aleatorios Finitos (Random Finite Sets - RFS), los cuales usan mediciones pasadas de los objetos para predecir posiciones futuras de todos ellos simultaneamente, mientras que también se consideran los casos de nacimientos y muertes de los objetos. Estos algoritmos fueron concebidos para el trackeo de objetos con movimientos simples y predecibles en condiciones de una gran cantidad ruido en las mediciones. mientras que las condiciones en las que se evaluarán son drasticamente opuestas, con un nivel muy alto de certeza en las mediciones pero con movimientos altamente no linear y muy impredecible.
Se ocupará una libreria abierta creada por el investigador Ba Tuong Vo, donde están implementados varios de los más clásicos algoritmos en esta área. Es por esto que el trabajo se basará más en el análisis de los resultados en estas nuevas condiciones y observar como se comparán a los algoritmos actuales del area de Computer Vision (CV)/ Machine Learning (ML), usando tanto métricas de RFS como del área de CV.

Identiferoai:union.ndltd.org:UCHILE/oai:repositorio.uchile.cl:2250/170746
Date January 2019
CreatorsThomas Brigneti, Andrés Attilio
ContributorsAdams, Martín, Cament Riveros, Leonardo, Caba Rutte, Andrés
PublisherUniversidad de Chile
Source SetsUniversidad de Chile
LanguageEnglish
Detected LanguageSpanish
TypeTesis
RightsAttribution-NonCommercial-NoDerivs 3.0 Chile, http://creativecommons.org/licenses/by-nc-nd/3.0/cl/

Page generated in 0.0022 seconds