Submitted by Emerson Leão Júnior null (emerson.leaojr@gmail.com) on 2017-12-05T18:07:16Z
No. of bitstreams: 1
leao_ej_me_prud.pdf: 4186679 bytes, checksum: ee186b23411343c3e2d782d622226699 (MD5) / Approved for entry into archive by ALESSANDRA KUBA OSHIRO null (alessandra@fct.unesp.br) on 2017-12-06T10:52:22Z (GMT) No. of bitstreams: 1
leaojunior_e_me_prud.pdf: 4186679 bytes, checksum: ee186b23411343c3e2d782d622226699 (MD5) / Made available in DSpace on 2017-12-06T10:52:22Z (GMT). No. of bitstreams: 1
leaojunior_e_me_prud.pdf: 4186679 bytes, checksum: ee186b23411343c3e2d782d622226699 (MD5)
Previous issue date: 2017-04-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Considerando o cenário durante a crise hídrica de 2014 e a situação crítica dos reservatórios do sistema Cantareira no estado de São Paulo, este estudo realizado no reservatório Jaguari-Jacareí, consistiu na extração de informações a partir de imagens multiespectrais e análise da qualidade da informação relacionada com a acurácia no cálculo do volume de água do reservatório. Inicialmente, a superfície do espelho d’água foi obtida pela classificação da cobertura da terra a partir de imagens multiespectrais RapidEye tomadas antes e durante a crise hídrica (2013 e 2014, respectivamente), utilizando duas abordagens distintas: classificação orientada a objeto (Object-based Image Analysis - OBIA) e classificação baseada em pixel (Support Vector Machine – SVM). A acurácia do usuário por classe permitiu expressar o erro para detectar a superfície do espelho d’água para cada abordagem de classificação de 2013 e 2014. O segundo componente da estimação do volume foi a representação do relevo submerso, que considerou duas fontes de dados na construção do modelo numérico do terreno (MNT): dados topográficos provenientes de levantamento batimétrico disponibilizado pela Sabesp e o modelo de superfície AW3D30 (ALOS World 3D 30m mesh), para complementar a informação não disponível além da cota 830,13 metros. A comparação entre as duas abordagens de classificação dos tipos de cobertura da terra do entorno do reservatório Jaguari-Jacareí mostrou que SVM resultou em indicadores de acurácia ligeiramente superiores à OBIA, para os anos de 2013 e 2014. Em relação à estimação de volume do reservatório, incorporando a informação do nível de água divulgado pela Sabesp, a abordagem SVM apresentou menor discrepância relativa do que OBIA. Apesar disso, a qualidade da informação produzida na estimação de volume, resultante da propagação da variância associada aos dados envolvidos no processo, ambas as abordagens produziram valores similares de incerteza, mas com uma sutil superioridade de OBIA, para alguns dos cenários avaliados. No geral, os métodos de classificação utilizados nesta dissertação produziram informação acurada e adequada para o monitoramento de recursos hídricos e indicou que a abordagem SVM teve um desempenho sutilmente superior na classificação dos tipos de cobertura da terra, na estimação do volume e em alguns dos cenários considerados na propagação da incerteza. / This study aims to extract information from multispectral images and to analyse the information quality in the water volume estimation of Jaguari-Jacareí reservoir. The presented study of changes in the volume of the Jaguari-Jacareí reservoir was motivated by the critical situation of the reservoirs from Cantareira System in São Paulo State caused by water crisis in 2014. Reservoir area was extracted from RapidEye multispectral images acquired before and during the water crisis (2013 and 2014, respectively) through land cover classification. Firstly, the image classification was carried out in two distinct approaches: object-based (Object-based Image Analysis - OBIA) and pixel-based (Support Vector Machine - SVM) method. The classifications quality was evaluated through thematic accuracy, in which for every technique the user accuracy allowed to express the error for the class representing the water in 2013 and 2014. Secondly, we estimated the volume of the reservoir’s water body, using the numerical terrain model generated from two additional data sources: topographic data from a bathymetric survey, available from Sabesp, and the elevation model AW3D30 (to complement the information in the area where data from Sabesp was not available). When compare the two classification techniques, it was found that in the image classification, SVM performance slightly overcame the OBIA classification technique for 2013 and 2014. In the volume calculation considering the water level estimated from the generated DTM, the result obtained by SVM approach was better in 2013, whereas OBIA approach was more accurate in 2014. Considering the quality of the information produced in the volume estimation, both approaches presented similar values of uncertainty, with the OBIA method slightly less uncertain than SVM. In conclusion, the classification methods used in this dissertation produced accurate information to monitor water resource, but SVM had a subtly superior performance in the classification of land cover types, volume estimation and some of the scenarios considered in the propagation of uncertainty.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unesp.br:11449/152234 |
Date | 25 April 2017 |
Creators | Leão Junior, Emerson [UNESP] |
Contributors | Universidade Estadual Paulista (UNESP), Galo, Maria de Lourdes Bueno Trindade [UNESP], Ivánová, Ivana [UNESP] |
Publisher | Universidade Estadual Paulista (UNESP) |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UNESP, instname:Universidade Estadual Paulista, instacron:UNESP |
Rights | info:eu-repo/semantics/openAccess |
Relation | 600 |
Page generated in 0.0023 seconds