Return to search

Autopilot And Guidance Design For A Mini Rov (remotely Operated Underwater Vehicle)

This thesis consists of a mathematical model, autopilot and guidance design of a mini ROV (Remotely Operated Underwater Vehicle) and investigates the effects of environmental forces (ocean currents etc.) on the guidance algorithms. First of all, a non-linear 6 degrees-of-freedom (DOF) mathematical model is obtained. This model includes hydrodynamics forces and moments. There is no exact calculation method for hydrodynamic coefficients / however strip theory and results of computational fluid dynamics (CFD) analysis are used to calculate their approximate values. Linear mathematical model is obtained by linearization at trim points and it is used when designing surge speed, heading and depth controller. Guidance is examined by two methods such as way point guidance by line-of-sight (LOS) and way point guidance based on optimal control. Moreover, an online obstacle avoidance algorithm is developed. This thesis ends with the subject of navigation of the vehicle under GPS-like measurements and magnetic sensors measurements.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12615767/index.pdf
Date01 September 2012
CreatorsCevher, Firat Yilmaz
ContributorsLeblebicioglu, Prof. Dr. M. Kemal
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0019 seconds