Return to search

Oligohaline Wetland Response and Recovery Following Storm-driven Saltwater Intrusion in Coastal Louisiana

Coastal ecosystems occupy an interface between land and ocean, making them vulnerable to a variety of natural and anthropogenic disturbances. Large, episodic disturbances (mega-disturbances) cause immediate and long-lasting changes to coastal wetland plant communities and soils by changing the environmental conditions in which they exist. Here I examined the impacts of storm-induced saltwater intrusion and post-intrusion conditions on the structure and growth of an oligohaline wetland plant community, and on wetland soil biogeochemistry and conditions during and after saltwater intrusion. In the greenhouse, a six-week saltwater intrusion reduced canopy cover and species richness. Once intrusion stress was alleviated, plant community structure and growth were heavily influenced by water level during the 20-month recovery period. Plant resilience after subsequent but non-lethal disturbance (clipping) was dependent on the interaction of flooding and salinity, such that canopy cover recovered to pre-clipping condition more slowly under salty, drained conditions. I also found that sustained high water level favored belowground biomass accumulation, high shear strength, and a relatively low decomposition rate in oligohaline wetland soils in the greenhouse. In the field, plant community structure and growth following saltwater intrusion were heavily influenced by the degree of flooding during the recovery period. High flooding depressed canopy cover and species richness, and influenced species dominance. High flooding also resulted in reduced soil conditions in which sulfide accumulated, and in depressed belowground biomass accumulation. Conversely, sediment inputs enhanced wetland recovery from saltwater intrusion by increasing end-of-season aboveground biomass, providing nutrients, and lowering sulfide concentration when flooding was high. Post-intrusion grazing intensity had few impacts on wetland plants and soils during the recovery phase. Soil response variables measured in intrusion-impacted and reference soils before, during, and after a 6-week saltwater intrusion event indicated that although some significant changes in microbial activity, abundance, and nutrient availability occurred due to saltwater intrusion, these impacts were generally transient, with post-intrusion conditions resembling pre-intrusion conditions.
In conclusion, storm-induced saltwater intrusion has some long-lasting impacts on oligohaline wetland plant communities, but mostly transient impacts on oligohaline wetland soils. Possibly more importantly, I found that the oligohaline wetland plant community and soil structure and function was determined by post-intrusion environmental conditions. Because oligohaline wetlands provide vital ecological services in many coastal regions, great effort should be put forth to understand both natural and human impacts to these systems. Information gained through research should be applied in a way that encourages the maintenance of healthy, productive, and diverse wetland communities.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-06272013-153152
Date02 July 2013
CreatorsKiehn, Whitney Marie
ContributorsBlouin, David, Mendelssohn, Irving A., Twilley, Robert, White, John R., Chen, Q. Jim, Gambrell, Robert
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-06272013-153152/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0095 seconds