Para o combate da atual crise de sustentabilidade ambiental, diversos estudos sobre a biodiversidade e o meio ambiente têm sido realizados com o propósito de embasar estratégias eficientes de conservação e uso de recursos naturais. Esses estudos são fundamentados em avaliações e monitoramentos da biodiversidade que ocorrem por meio da coleta, armazenamento, análise, simulação, modelagem, visualização e intercâmbio de um volume expressivo de dados sobre a biodiversidade em amplo escopo temporal e espacial. Dados sobre ocorrências de espécies são um tipo de dado de biodiversidade particularmente importante, pois são amplamente utilizados em diversos estudos. Contudo, para que as análises e os modelos gerados a partir desses dados sejam confiáveis, os dados utilizados devem ser de alta qualidade. Assim, para melhorar a Qualidade de Dados (QD) sobre ocorrências de espécies, o objetivo deste trabalho foi realizar um estudo sobre QD aplicado a dados de ocorrências de espécies que permitisse avaliar e melhorar a QD por meio de técnicas e recursos de prevenção a erros. O estudo foi aplicado a um Sistema de Informação (SI) de digitalização de dados de ocorrências de espécies, o Biodiversity Data Digitizer (BDD), desenvolvido no âmbito dos projetos da Inter-American Biodiversity Information Network Pollinators Thematic Network (IABIN-PTN) e BioAbelha FAPESP. Foi realizada uma revisão da literatura sobre dados de ocorrências de espécies e sobre os seus domínios de dados mais relevantes. Para os domínios de dados identificados como mais importantes (táxon, geoespacial e localização), foi realizado um estudo sobre a Avaliação da QD, no qual foi definido um conceito de QD em relação a cada domínio de dados por meio da identificação, definição e inter-relação de dimensões de QD (aspectos) importantes e de problemas que afetam essas dimensões. Embasado nesse estudo foram identificados recursos computacionais que permitissem melhorar a QD por meio da redução de erros. Utilizando uma abordagem de Gerenciamento da QD de prevenção a erros, foram identificados 13 recursos computacionais que auxiliam na prevenção de 8 problemas de QD, proporcionando, assim, uma melhoria da acurácia, precisão, completude, consistência, credibilidade da fonte e confiabilidade de dados taxonômicos, geoespaciais e de localização de ocorrências de espécies. Esses recursos foram implementados em duas ferramentas integradas ao BDD. A primeira é a BDD Taxon Tool. Essa ferramenta facilita a entrada de dados taxonômicos de ocorrências livres de erros por meio de, entre outros recursos, técnicas de fuzzy matching e sugestões de nomes e de hierarquias taxonômicas baseados no Catalog of Life. A segunda ferramenta, a BDD Geo Tool, auxilia o preenchimento de dados geoespaciais e de localização de ocorrências de espécies livres de erros por meio de técnicas de georeferenciamento a partir de descrição em linguagem natural da localização, de georeferenciamento reverso e de mapas interativos do Google Earth, entre outros recursos. Este trabalho demonstrou que com a implementação de determinados recursos computacionais em SI, problemas de QD podem ser reduzidos por meio da prevenção a erros. Como consequência, a QD em domínios de dados específicos é melhorada em relação a determinadas dimensões de QD. / For fighting the current environment sustainability crisis, several studies on biodiversity and the environment have been conducted in order to support efficient strategies for conservation and sustainable use of natural resources. These studies are based on assessment and monitoring of biodiversity that occur by means of the collection, storage, analysis, simulation, modeling, visualization and sharing of a significant volume of biodiversity data in broad temporal and spatial scale. Species occurrences data are a particularly important type of biodiversity data because they are widely used in various studies. Nevertheless, for the analyzing and modeling obtained from these data to be reliable, the data used must be high quality. Thus, to improve the Data Quality (DQ) of species occurrences, the aim of this work was to conduct a study about DQ applied to species occurrences data that allowed assessing and improving the DQ using techniques and resources to prevent errors. This study was applied to an Information System (IS) designed to digitize species occurrences, the Biodiversity Data Digitizer (BDD), that was developed in the scope of the Inter-American Biodiversity Information Network Pollinators Thematic Network (IABIN-PTN) and BioAbelha FAPESP projects. A literature review about species occurrences data and about the most relevant data domains was conducted. For the most important data domains identified (taxon, geospatial and location), a study on the DQ Assessment was performed, in which important DQ dimensions (aspects) and problems that affect theses dimensions were identified, defined and interrelated. Based upon this study, computational resources were identified that would allow improving the DQ by reducing errors. Using the errors preventing DQ Management approach, 13 computing resources to support the prevention of 8 DQ problems were identified, thus providing an improvement of accuracy, precision, completeness, consistency, credibility of source and believability of taxonomic, geospatial and location data of species occurrences. These resources were implemented in two tools integrated to the BDD IS. The first tool is the BDD Taxon Tool. This tool facilitates the entrance of error-free taxonomic data of occurrences by means of fuzzy matching techniques and suggestions for taxonomic names and hierarchies based on Catalog of Life, among other resources. The second tool, the BDD Geo Tool, helps to fill in error-free geospatial and location data about species occurrence by means of georeferencing techniques from natural language description of location, reverse georeferencing and Google Earth interactive maps, among other resources. This work showed that with the development of certain computing resources integrated to an IS, DQ problems are reduced by preventing errors. As a result of reducing some problems in particular, the DQ in specific data domains is improved for certain DQ dimensions.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-03052012-120914 |
Date | 09 February 2012 |
Creators | Veiga, Allan Koch |
Contributors | Saraiva, Antonio Mauro |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0028 seconds