Un grand nombre d'applications de robotique embarquées pourrait bénéficier d'une détection explicite des objets mobiles. A ce jour, la majorité des approches présentées repose sur la classification, ou sur une analyse structurelle de la scène (la V-Disparité est un bon exemple de ces approches). Depuis quelques années, nous sommes témoins d'un intérêt croissant pour les méthodes faisant collaborer activement l'analyse structurelle et l'analyse du mouvement. Ces deux processus sont en effet étroitement liés. Dans ce contexte, nous proposons, à travers de travail de thèse, deux approches différentes. Si la première fait appel à l'intégralité de l'information stéréo/mouvement, la seconde se penche sur le cas des capteurs monoculaires, et permet de retrouver une information partielle.La première approche présentée consiste en un système innovation d'odométrie visuelle. Nous avons en effet démontré que le problème d'odométrie visuelle peut être posé de façon linéaire, alors que l'immense majorité des auteurs sont contraint de faire appel à des méthodes d'optimisation non-linéaires. Nous avons également montré que notre approche permet d'atteindre, voire de dépasser le niveau de performances présenté par des système matériels haut de gamme (type centrale inertielle). A partir de ce système d'odométrie visuelle, nous définissons une procédure permettant de détecter les objets mobiles. Cette procédure repose sur une compensation de l'influence de l'égo-mouvement, puis une mesure du mouvement résiduel. Nous avons ensuite mené une réflexion de fond sur les limitations et les sources d'amélioration de ce système. Il nous est apparu que les principaux paramètres du système de vision (base, focale) ont un impact de premier plan sur les performances du détecteur. A notre connaissance, cet impact n'a jamais été décrit dans la littérature. Il nous semble cependant que nos conclusions peuvent constituer un ensemble de recommandations utiles à tout concepteur de système de vision intelligent.La seconde partie de ce travail porte sur les systèmes de vision monoculaire, et plus précisément sur le concept de C-Vélocité. Alors que la V-Disparité a défini une transformée de la carte de disparité permettant de mettre en avant certains plans de l'image, la C-Vélocité défini une transformée du champ de flot optique, et qui utilise la position du FoE, qui permet une détection facile de certains plans spécifiques de l'image. Dans ce travail, nous présentons une modification de la C-Vélocité. Au lieu d'utiliser un a priori sur l'égo-mouvement (la position du FoE) afin d'inférer la structure de la scène, nous utilisons un a priori sur la structure de la scène afin de localiser le FoE, donc d'estimer l'égo-mouvement translationnel. Les premiers résultats de ce travail sont encourageants et nous permettent d'ouvrir plusieurs pistes de recherches futures.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00673364 |
Date | 14 October 2011 |
Creators | Bak, Adrien |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds