Return to search

Control of hydrogen sulphide, ammonia and odour emissions from swine barns using zinc oxide nanoparticles

Application of zinc oxide (ZnO) nanoparticles was evaluated as a possible measure to mitigate the levels of hydrogen sulphide (H2S), ammonia (NH3) and odour in swine facilities. Two deployment techniques were investigated: direct mixing of zinc oxide nanoparticles into the slurry, and filtration with nanoparticles as filtering media for the manure gases. The overall goal of this work was to determine the impact of the treatments on hydrogen sulphide, ammonia and odour emissions, pig performance and manure characteristics as well as to assess the feasibility of the application of this technology in a typical swine barn.
Semi-pilot scale tests were conducted to evaluate operational factors in open system conditions, the results of which showed that the mixing method required a particle-to-slurry ratio of 3 grams of zinc oxide per litre of slurry to control hydrogen sulphide and ammonia levels. Using the air filtration technique, a fluidized bed filter design with a 0.28 g/cm2 loading rate and rated at 0.5 m/s face velocity was found to be the most effective combination for controlling gas levels. Room-scale experiments were conducted in specially designed chambers to assess the effectiveness of the treatments under conditions that represent commercial swine production. The addition of zinc oxide nanoparticles into the manure achieved more than 95% reduction in hydrogen sulphide levels while no significant effects on ammonia concentrations were observed. Zinc oxide nanoparticles were persistent in maintaining low hydrogen sulphide levels up to 15 days after treatment application. On the other hand, the ventilation air recirculation system with a zinc oxide filter achieved significant reduction in both hydrogen sulphide and ammonia
concentrations at the animal- and human-occupied zones. Neither treatment had any significant impact on pig performance and manure nutrient characteristics. Estimates of the cost of application of the treatments in a 100-head grow-finish room showed that employing the air filtration method amounted to around 3.8% of the average total cost of production, which was economically more feasible than the mixing method; however, various options can be pursued to further reduce the cost of application of both treatments.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-08112011-003611
Date02 September 2011
CreatorsAlvarado, Alvin Ceniza
ContributorsThacker, Philip, Guo, Huiqing, Fonstad, Terry, Predicala, Bernardo
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-08112011-003611/
Rightsrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0112 seconds