Return to search

Roles of Calcium Ions and Cyclic AMP in Olfactory Transduction

The roles of Ca2 + and cAMP in olfactory transduction were explored using agents which affect calcium channels and second messenger systems. These agents were applied at certain calculated final concentrations onto olfactory epithelia of urethane-anesthetized frogs (Sana PiPlens) by two-sec aerosol spray. During extracellular recording, saturated vapors of isoamyl acetate were delivered every 100 sec in 0.3 sec pulses to produce an electroolfactogram (EOG). Inorganic cations that block inward calcium currents inhibit EOG responses with the following rank order: (La3+) > (Zn2+, Cd2+) > (Al3+, Ca2+, Sr2+) > (Co2+). Application of 7.5 mM La3+ eradicates £0G's, while Ba2+ (which can carry more current that Ca2+) initially produces significant enhancement (F=43.04, p<0.001, df=19). Magnesium ion has no effect on EOG's at 7.5 mM, while 1.5 X 10"4M Ca2+ is significantly inhibitory (F=5.74; p=0.0355; df=12). Control aerosol sprays of distilled water depress EOG's by an average of 5%. The organic calcium channel antagonists diltiazem and verapamil inhibit EOG's by 17% and 36X, respectively, at a concentration of 1.5 X 10~*M. Verapamil produces significant inhibition (F=17.17; p=0.002; df=ll) at 1.5 X 10" 5 M, while the 1,4-dihydropyridine calcium channel antagonists, nicardipine and nifedipine, do not inhibit beyond 1% DMSO controls. Several calmodulin antagonists decrease EOG's, but without correlation to their anti-calmodulin potency. Application of 1.5 X 10"*M chlorpromazine and N-(6-aminohexyl)-5-chloro-l-naphthalenesulfonamide inhibit EOG's by 31% and 27%, respectively, while trifluoperazine inhibits by 23%. Dibutyryl cAMP, a lipophilic mimic of cAMP, produces 54% inhibition at 1.5 X 10" *M. Dibutyryl cGMP, cGMP, cAMP, and adenosine all decrease EOG's by less than 15% compared to distilled water controls. Forskolin, a reversible activator of adenylate cyclase, inhibits EOG's by 57% at 1.5 X 10"5M, which is significant beyond the 1% DMSO controls (F=17.17; p=0.002; df=ll). These data support the hypothesis that Ca2+ participates in olfactory transduction. Calcium ions could serve as charge carriers, second messengers, or both. Cyclic AMP could be involved with the primary excitatory process or sensory adaptation, or both.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc331287
Date12 1900
CreatorsWinegar, Bruce D. (Bruce David)
ContributorsSchafer, Rollie, Orr, Edward, Donahue, Manus J., Gross, Guenter W.
PublisherNorth Texas State University
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatv, 102 leaves: ill., Text
RightsPublic, Winegar, Bruce D. (Bruce David), Copyright, Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0014 seconds