Return to search

Atf5 Links Olfactory Receptor Induced Stress Response to Proper Neuronal Function

Mammalian olfaction requires the enduring expression of a single olfactory receptor (OR) gene for the life of each sensory neuron. This is due to the fact that OR proteins play multiple roles in the coherent perception of odors, first by sensing molecular cues from the external environment, and by directing the wiring of neuronal projections faithfully from the peripheral sensory neurons to the brain. Both of these processes require singular and stable OR expression in olfactory sensory neurons (OSNs. The transcription factor Atf5 has previously been shown to enforce these modes of expression, through a process that requires the unfolded protein response (UPR). The work presented in this thesis deciphers how Atf5 enables proper OR expression and neuronal function in the olfactory system. We identify the developmental window in which UPR is activated, and provide evidence that Atf5 protein expression coincides with the assembly of a multi-chromosomal enhancer hub that drives singular and robust OR transcription, opposing a model in which precocious polygenic OR transcription initiates UPR. Further, we show that Atf5 directly regulates a collection of genes that facilitate proper OR trafficking, axonogenesis, as well as transcription factors and chromatin modifiers, which we propose to be involved in stable OR expression and neuronal maturation. Finally, we find that Atf5 has a special role in the olfactory system that cannot be replaced by its ubiquitously expressed homologue, Atf4, and that this is due to a requisite interaction between Atf5 and the bZIP transcription factor Cebpγ, and potentially other transcription factors known to be critical for olfactory function.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/d8-0vn1-fm54
Date January 2020
CreatorsKahiapo, Jerome Keoki
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.0542 seconds