Traditional call button networks that control elevator systems utilize a wired connection for communication. The communication cables are run through the elevator shaft from one call button to another and finally to the controller on the roof. Installing this wired link is highly time consuming. In this thesis, we propose the design for a wireless call button network. Two important features of this wireless network design are low cost and low power consumption. Controller Area Network (CAN) is a widely used protocol for wired networks and has been proposed for use in next generation elevator control systems. A modified CAN for wireless (MCANW) protocol has been developed for the wireless call button network. The wireless link will be implemented via the use of data radios. A modified form of traditional Binary Phase Shift Keying (BPSK) modulation scheme for the radios is proposed. The proposed modulation scheme, like differential BPSK, can be detected non-coherently but it offers better performance than differential BPSK. Its implementation includes an innovative tracking algorithm to maintain synchronization at the receiver. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/9763 |
Date | 23 June 1999 |
Creators | Mukhija, Punit |
Contributors | Electrical and Computer Engineering, Bostian, Charles W., Davis, William A., Sweeney, Dennis G., Farley, Willard W. Jr. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | final.pdf |
Page generated in 0.0021 seconds