TTumor hypoxia (poor oxygenation) adversely affects patient prognosis by promoting therapeutic resistance and an aggressive tumor phenotype. We aimed to understand how urokinase plasminogen activator receptor (uPAR), a cysteine-rich protein implicated in the malignant phenotype and poor patient prognosis, matures in hypoxia. We hypothesized that secretion of uPAR during hypoxia is conferred by a superior ability to form disulfide bonds without oxygen. A model and assay was established to monitor the oxygen-dependency of suPAR (a soluble secreted isoform of uPAR) folding and secretion. We found that suPAR maturation involves disulfide formation and N-linked glycosylation in normoxia. In anoxia, suPAR disulfide formation was impaired, but suPAR was nevertheless secreted. We propose that suPAR has low dependency on disulfide formation for efficient secretion in comparison to other disulfide-containing proteins. Mechanisms supporting protein expression during hypoxia may potentially be targeted to mitigate the adverse effects of tumor hypoxia and ultimately improve cancer therapy.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/43321 |
Date | 10 December 2013 |
Creators | Rumantir, Ryan Allister |
Contributors | Koritzinsky, Marianne |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0147 seconds