L’étude présentée est le fruit d’une collaboration entre le groupe de recherche de l'Electrodynamique du INP-ENSEEIHT (Toulouse), LAPLACE Laboratoire de Recherche et l'École Polytechnique de Gdańsk, le Département Génie Electrique et Automatique. L’objectif de cet projet est la conception d’un moteur piézoélectrique multicellulaire composé de plusieurs stators de moteurs à rotation de mode (3 au minimum) permettant de garantir des fréquences de résonance élevées ainsi qu’une répartition des efforts de frottement plus favorables. Le dimensionnement du moteur s’appuiera sur un cahier des charges du domaine de l’automobile, en visant une structure la plus simple possible à mettre en oeuvre. Outre un travail important concernant la conception, il faudra procéder à sa caractérisation après la réalisation du prototype. La dernière étape concernera la définition des stratégies d’alimentation et de commande d’une telle structure qui posera inévitablement le problème de l’autoadaptativité des cellules résonantes à une même fréquence de résonance. Le moteur multicellular (MPM) proposé sera une combinaison du moteur à onde progressive annulaire (Shinsei) et moteur à rotation de mode. Il combine les avantages des deux moteurs par une combinaison de trois cellules élémentaires de moteurs à rotation de mode. La combinaison de ces deux concepts, accroît le nombre de surface de contact. Les dimensions préliminaires et les paramètres de la MPM prototype ont été vérifiés en utilisant son modèle développé analytique (géométrique) et méthodes numériques (MÉF). Le modèle analytique de la MPM a été développé sur la base de circuit équivalent de la Langevin actuateur. La model analytique a été fait dans Matlab. Les principaux paramètres calculés sont: fréquence de résonance 26.2 kHz, couple bloque 0.4 Nm et la vitesse 40 tr/mn. En utilisant le modèle MÉF les fréquences de résonance et les valeurs du stress de la MPM prototype ont été déterminés. . Des simulations ont été effectuées pour sélectionner la fréquence de résonance et la forme pour concevoir le contre mass. Les fréquences de résonances résultantes sont 25.6 kHz et simulations du stress moins de 9 N/mm2. Comparaison des résultats fréquence de résonance calcule à modèle analytique (26.2 kHz) et le modèle FEM (25.6 kHz) du une prototype MPM, il convient de noter, que de modèle analytique est fortement modèle précis. Enfin, la réalisation des pièces par imprimante 3D a été décidée (contre-mass et carter) et les matériaux: aluminium et nylatron. Les autres parties ont été réalisés sur une machine à commande numérique à l'aide de l'acier. Les mesures de la MPM prototype ont été effectuées. L'étape suivante a consisté à tester le moteur et vérifier la fréquence de résonance, et la mesure de déplacement, résonances fréquences résultantes sont 22 kHz et déplacement 1.1 μm sur rotor/stator point du contact. Finalement, les paramètres mécaniques ont été mesurés. Les meilleurs paramètres mécaniques ont été obtenus sur dSpace support de laboratoire: vitesse - 46-48 tr/mn, et le couple bloqué – 0.4 Nm. Les résultats sont satisfaisants et donnent un bon point de départ pour les futurs travaux. / The research works in the frame of the dissertation have been carried out with the cooperation between the University INP - ENSEEIHT - LAPLACE (Laboratory on Plasma and Conversion of Energy), Toulouse, France, and the Gdańsk University of Technology, Faculty of Electrical and Control Engineering, Research Unit Power Electronics and Electrical Machines, Gdańsk, Poland. The main scope of the dissertation was following: development a novel concept, implementation and analysis of the multicell piezoelectric motor (MPM) for the control of the car seat position. The new concept of the MPM is based on a combined topology using the working principles of the traveling wave motor/actuator (known as the Shinsei motor), and the electromechanical structure of the rotating-mode motor/actuator. The electromechanical structure of each rotating-mode motor has been considered as an independent one – referred to as a "single cell". The application of the novel MPM for the control of the car seat position will reduce the number of gears due to its direct coupling with the driving/movement shaft of the seat positioning system. The achieved effects of a such integrated structure will be following: a higher efficiency, a lower noise of performance, a low cost of manufacturing, and in general a lower pollution of the environment. The preliminary dimensions and parameters of the prototype MPM have been verified using its developed analytical (geometrical) model and numerical methods (FEM). The prototype MPM has been manufactured. Finally, the laboratory measurements of the MPM prototype has been carried out.
Identifer | oai:union.ndltd.org:theses.fr/2015INPT0065 |
Date | 29 September 2015 |
Creators | Ryndzionek, Roland |
Contributors | Toulouse, INPT, Politechnika Gdańska (Pologne), Rouchon, Jean-François, Ronkowski, Mieczyslaw |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds