Return to search

Réseaux et signal : des outils de traitement du signal pour l'analyse des réseaux / Networks and signal : signal processing tools for network analysis

Cette thèse propose de nouveaux outils adaptés à l'analyse des réseaux : sociaux, de transport, de neurones, de protéines, de télécommunications... Ces réseaux, avec l'essor de certaines technologies électroniques, informatiques et mobiles, sont de plus en plus mesurables et mesurés ; la demande d'outils d'analyse assez génériques pour s'appliquer à ces réseaux de natures différentes, assez puissants pour gérer leur grande taille et assez pertinents pour en extraire l'information utile, augmente en conséquence. Pour répondre à cette demande, une grande communauté de chercheurs de différents horizons scientifiques concentre ses efforts sur l'analyse des graphes, des outils mathématiques modélisant la structure relationnelle des objets d'un réseau. Parmi les directions de recherche envisagées, le traitement du signal sur graphe apporte un éclairage prometteur sur la question : le signal n'est plus défini comme en traitement du signal classique sur une topologie régulière à n dimensions, mais sur une topologie particulière définie par le graphe. Appliquer ces idées nouvelles aux problématiques concrètes d'analyse d'un réseau, c'est ouvrir la voie à une analyse solidement fondée sur la théorie du signal. C'est précisément autour de cette frontière entre traitement du signal et science des réseaux que s'articule cette thèse, comme l'illustrent ses deux principales contributions. D'abord, une version multiéchelle de détection de communautés dans un réseau est introduite, basée sur la définition récente des ondelettes sur graphe. Puis, inspirée du concept classique de bootstrap, une méthode de rééchantillonnage de graphes est proposée à des fins d'estimation statistique. / This thesis describes new tools specifically designed for the analysis of networks such as social, transportation, neuronal, protein, communication networks... These networks, along with the rapid expansion of electronic, IT and mobile technologies are increasingly monitored and measured. Adapted tools of analysis are therefore very much in demand, which need to be universal, powerful, and precise enough to be able to extract useful information from very different possibly large networks. To this end, a large community of researchers from various disciplines have concentrated their efforts on the analysis of graphs, well define mathematical tools modeling the interconnected structure of networks. Among all the considered directions of research, graph signal processing brings a new and promising vision : a signal is no longer defined on a regular n-dimensional topology, but on a particular topology defined by the graph. To apply these new ideas on the practical problems of network analysis paves the way to an analysis firmly rooted in signal processing theory. It is precisely this frontier between signal processing and network science that we explore throughout this thesis, as shown by two of its major contributions. Firstly, a multiscale version of community detection in networks is proposed, based on the recent definition of graph wavelets. Then, a network-adapted bootstrap method is introduced, that enables statistical estimation based on carefully designed graph resampling schemes.

Identiferoai:union.ndltd.org:theses.fr/2014ENSL0938
Date09 October 2014
CreatorsTremblay, Nicolas
ContributorsLyon, École normale supérieure, Borgnat, Pierre
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0026 seconds