This dissertation proposes a new methodology for building and using structured knowledge models for automatic image annotation. Specifically, our first proposals deal with the automatic building of explicit and structured knowledge models, such as semantic hierarchies and multimedia ontologies, dedicated to image annotation. Thereby, we propose a new approach for building semantic hierarchies faithful to image semantics. Our approach is based on a new image-semantic similarity measure between concepts and on a set of rules that allow connecting the concepts with higher relatedness till the building of the final hierarchy. Afterwards, we propose to go further in the modeling of image semantics through the building of explicit knowledge models that incorporate richer semantic relationships between image concepts. Therefore, we propose a new approach for automatically building multimedia ontologies consisting of subsumption relationships between concepts, and also other semantic relationships such as contextual and spatial relations. Fuzzy description logics are used as a formalism to represent our ontology and to deal with the uncertainty and the imprecision of concept relationships. In order to assess the effectiveness of the built structured knowledge models, we propose subsequently to use them in a framework for image annotation. We propose therefore an approach, based on the structure of semantic hierarchies, to effectively perform hierarchical image classification. Furthermore, we propose a generic approach for image annotation combining machine learning techniques, such as hierarchical image classification, and fuzzy ontological-reasoning in order to achieve a semantically relevant image annotation. Empirical evaluations of our approaches have shown significant improvement in the image annotation accuracy.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00905953 |
Date | 08 February 2013 |
Creators | Bannour, Hichem |
Publisher | Ecole Centrale Paris |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0014 seconds