Na atualidade, o interesse pelo uso de ontologias tem sido incrementado. No entanto, o processo de construção pode ser custoso em termos de tempo. Para uma ontologia ser construída, precisa-se de um especialista com conhecimentos de um editor de ontologias. Com a finalidade de reduzir tal processo de construção pelo especialista, analisamos e propomos um método para realizar aprendizado de ontologias (AO) de forma supervisionada. O presente trabalho consiste em uma abordagem combinada de diferentes técnicas no AO. Primeiro, usamos uma técnica estatística chamada C/NC-values, acompanhada da ferramenta Cogroo, para extrair os termos mais representativos do texto. Esses termos são considerados por sua vez como conceitos. Projetamos também uma gramática de restrições (GR), com base na informação linguística do Português, com o objetivo de reconhecer e estabelecer relações entre conceitos. Para poder enriquecer a informação na ontologia, usamos a análise de conceitos formais (ACF) com o objetivo de identificar possíveis superconceitos entre dois conceitos. Finalmente, extraímos ontologias para os textos de três temas, submetendo-as à avaliação dos especialistas na área. Um web site foi feito para tornar o processo de avaliação mais amigável para os avaliadores e usamos o questionário de marcos de características proposto pelo método OntoMetrics. Os resultados mostram que nosso método provê um ponto de partida aceitável para a construção de ontologias. / Nowadays, the interest in the use of ontologies has increased, nevertheless, the process of ontology construction can be very time consuming. To build an ontology, we need a domain expert with knowledge in an ontology editor. In order to reduce the time needed by the expert, we propose and analyse a supervised ontology learning (OL) method. The present work consists of a combined approach of different techniques in OL. First, we use a statistic technique called C/NC-values, with the help of the Cogroo tool, to extract the most significant terms. These terms are considered as concepts consequently. We also design a constraint grammar (CG) based in linguistic information of Portuguese to recognize relations between concepts. To enrich the ontology information, we use the formal concept analysis (FCA) in order to discover a parent for a set of concepts. In order to evaluate the method, we have extracted ontologies from text on three different domains and tested them with corresponding experts. A web site was built to make the evaluation process friendlier for the experts and we used an evaluation framework proposed in the OntoMetrics method. The results show that our method provides an acceptable starting point for the construction of ontologies.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-11022013-152711 |
Date | 08 October 2012 |
Creators | Carlos Eduardo Atencio Torres |
Contributors | Renata Wassermann, Fabio Gagliardi Cozman, Flavio Soares Correa da Silva |
Publisher | Universidade de São Paulo, Ciência da Computação, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds