Dans cette thèse nous avons étudié, d'une part le théorème d'absorption limitepour des opérateurs de Schrödinger et de Dirac avec des potentiels oscillants. Lefait de considérer des potentiels oscillants est intéressant dans la mesure où ses opé-rateurs peuvent avoir des valeurs propres plongées dans le spectre continu (c'est lecas pour Schrödinger), ce qui est plutôt inhabituel et introduit de nouvelles di-cultés. L'étude du théorème d'absorption limite est très importante pour la théoriede la diffusion. Un intérêt particulier du sujet réside dans le fait que l'outil naturelpour procéder à l'étude en question, à savoir la théorie du commutateur de Mourre,ne s'applique pas. Une alternative récente a été développée par les co-directeurs dela thèse Thierry Jecko et Sylvain Golénia. Elle a été appliquée à un opérateur deSchrödinger avec potentiel oscillant. Il s'agit donc d'améliorer les résultats sur lesopérateurs de Schrödinger et de traiter le cas des opérateurs de Dirac. D'autre part,nous avons montré un résultat de type Helffer-Sjöstrand pour les opérateurs unitaires.Et pour finir, nous avons pu montrer l'existence des valeurs propre plongéespour l'opérateur de Dirac avec des potentiels relativement compact par rapport àl'opérateur de Dirac libre sur son spectre essentiel. / In this thesis, we have studied the limit absorption theorem for Schrödinger andDirac operators with oscillating potentials. Considering oscillating potentials is interestinginsofar as its operators can have of the eigenvalues plunged into the continuousspectrum (this is the case for Schrödinger), which is rather unusual and introducesnew dificulties. The study of the limit absorption theorem is very important for thetheory of diffusion. A particular interest of the subject lies in the fact that the naturaltool for the study in question, namely the Mourre switch theory, does not apply. Arecent alternative has been developed by the co-directors Thierry Jecko and SylvainGolénia. It has been applied to a Schrödinger operator with oscillating potential. Itis therefore a question of improving the results on the Schrödinger operators and oftreating the case of Dirac operators. Secondly, we have shown a Helffer-Sjöstrandformula for the unit operators and finally we have been able to show the existenceof the eigenvalues plunged for the Dirac operator with relatively compact potentialsrelative to the operator of free Dirac on its essential spectrum.
Identifer | oai:union.ndltd.org:theses.fr/2017CERG0839 |
Date | 27 February 2017 |
Creators | Mbarek, Aiman |
Contributors | Cergy-Pontoise, Jecko, Thierry, Golenia, Sylvain |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0017 seconds