Return to search

Recherche locale et optimisation combinatoire : de l'analyse structurelle d'un problème à la conception d'algorithmes efficaces

Les problèmes d'optimisation combinatoire sont généralement NP-difficiles et les méthodes exactes demeurent inefficaces pour les résoudre rapidement. Les métaheuristiques sont des méthodes génériques de résolution connues et utilisées pour leur efficacité. Elles possèdent souvent plusieurs paramètres qui s'avèrent fastidieux à régler pour obtenir de bonnes performances. Il est alors intéressant de chercher à rendre plus évident, voire à automatiser, ce réglage des paramètres. Le paysage d'un problème d'optimisation combinatoire est une structure, basée sur la notion de voisinage, permettant de caractériser le problème puis de suivre la dynamique d'une méthode d'optimisation pour comprendre son efficacité. Les travaux de cette thèse portent sur l'analyse de paysage de problèmes d'optimisation combinatoire et le lien étroit avec certaines classes de métaheuristiques, basées sur une exploration du voisinage des solutions. Ainsi, nous montrons l'influence de la structure de paysage sur la dynamique d'une métaheuristique, pour deux problèmes issus de la logistique. Ensuite, nous analysons les caractéristiques du paysage qui permettent de concevoir et/ou paramétrer des métaheuristiques, principalement des recherches locales, efficaces. La neutralité est, en particulier, une caractéristique structurelle importante des paysages. De tels paysages présentent de nombreux plateaux bloquant la progression d'une recherche locale. Après une analyse fine des plateaux, nous prouvons que cette structure neutre ne doit pas être ignorée. Puis, nous utilisons plusieurs informations liées à la neutralité, et plus particulièrement aux plateaux bloquants, pour concevoir une première recherche locale simple à mettre en œuvre et efficace. Enfin, pour approfondir nos travaux sur les structures neutres, nous avons choisi d'exploiter la neutralité à tous les niveaux du paysage pour concevoir une nouvelle recherche locale basée sur la capacité des solutions d'un même plateau à produire une amélioration. Une stratégie de guidage vers cette solution est alors proposée. La thèse se termine par l'analyse comparative des deux méthodes d'optimisation proposées pour les problèmes neutres afin d'en exploiter de nouvelles caractéristiques, et ainsi, renforcer le lien entre l'analyse de paysage et la conception de méthodes efficaces.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00682776
Date09 December 2011
CreatorsMarmion, Marie-Eleonore
PublisherUniversité des Sciences et Technologie de Lille - Lille I
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0022 seconds