Return to search

Carcinoembryonic Antigen-related Cellular Adhesion Molecule 1-Dependent Inhibition of T cell Responses

Neisseria gonorrhoeae infections are of major concern in areas of low socioeconomic status in both developed and developing nations. N. gonorrhoeae colonizes the genital tract by adhering to mucosal tissues through a number of adhesins, including the colony opacity-associated (Opa) proteins. Despite the random phase-variable expression of Opa proteins, 95% of clinical isolates express Opa variants that bind to the carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1), suggesting an essential role in vivo. Interestingly, even though gonorrhea is characterized by an intense inflammatory response, the organism is capable of evading the adaptive immune response. In previous studies by the Gray-Owen group, it has been established that certain gonococcal Opa variants bind CEACAM1 expressed by CD4+ T helper lymphocytes and, thereby, reduce their activation and proliferation. Since T cells are essential in establishing immune memory, inhibition of T cell function could explain the deficit in immune memory following gonococcal infection. In this thesis, I describe my studies to elucidate how CEACAM1 inhibits T cell activation on a molecular level. In Chapter 2, I demonstrate that outer membrane vesicles (OMVs) naturally shed by OpaCEA-expressing Neisseria sp. effectively inhibit CD4+ T cell activation, implicating a role for OMVs during infection and establishing that the Opa proteins do not have to be expressed in the context of the bacterium in order to elicit an inhibitory effect. In Chapter 3, I describe early steps in the CEACAM1-dependent inhibitory signaling cascade elicited when N. gonorrhoeae binds to CD4+ T cells. Finally, in Chapter 4, I show that a dynamic monomer-dimer equilibrium controls CEACAM1 function in epithelial cells and lymphocytes. Combined, the results presented in this thesis allow the derivation of a model to explain how CEACAM1 controls CD4+ T cell function at a molecular level.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/17791
Date24 September 2009
CreatorsLee, Hannah
ContributorsGray-Owen, Scott
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0016 seconds