One recent innovation in the networking industry, is the concept of Network FunctionVirtualization (NFV). NFV is based on a networking paradigm in which network functions,which have typically been implemented in the form of dedicated hardware appliances in thepast, are implemented in software and deployed on commodity hardware using modernvirtualization techniques. While the most common approach is to place each virtual networkfunction in a virtual machine - using hardware-level virtualization – the growing influenceand popularity of Docker and other container-based solutions has naturally led to the idea ofcontainerized deployments. This is a promising concept, as containers (or operating systemlevel virtualization) can offer a flexible and lightweight alternative to hardware-levelvirtualization, with the ability to use the resources of the host directly. The main problem withthis concept, is the fact that the default behavior of Docker and similar technologies is to relyon the networking stack of the host, which typically isn’t performant enough to handle theperformance requirements associated with NFV. In this dissertation, an attempt is made toevaluate the feasibility of using userspace networking to accelerate the network performanceof Docker containers, bypassing the standard Linux networking stack by moving the packetprocessing into userspace.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-55145 |
Date | January 2017 |
Creators | Rang, Tobias |
Publisher | Karlstads universitet |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf, application/pdf |
Rights | info:eu-repo/semantics/openAccess, info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds