This thesis presents the development of GPU accelerated solvers for use in simulation of the primary atomization phenomenon. By using the open source continuum mechanics library, OpenFOAM, as a basis along with the NVidia CUDA API linear system solvers have been developed so that the multiphase solver runs in part on GPUs. This aims to reduce the enormous computational cost associated with modelling primary atomization. The modelling of such is vital to understanding the mechanisms that make combustion efficient. Firstly, the OpenFOAM code is benchmarked to assess both its suitability for atomization problems and to establish efficient operating parameters for comparison to GPU accelerations. This benchmarking then culminates in a comparison to an experimental test case, from the literature, dominated by surface tension, in 3D. Finally, a comparison is made with a primary atomizing liquid sheet as published in the literature. A geometric multigrid method is employed to solve the pressure Poisson equations, the first use of a geometric multigrid method in 3D GPU accelerated VOF simulation. Detailed investigations are made into the compute efficiency of the GPU accelerated solver, comparing memory bandwidth usage to hardware maximums as well as GPU idling time. In addition, the components of the multigrid method are also investigated, including the effect of residual scaling. While the GPU based multigrid method shows some improvement over the equivalent CPU implementation, the costs associated with running on GPU cause this to not be significantly greater.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:764958 |
Date | January 2018 |
Creators | Dyson, Joshua |
Contributors | Xia, J. ; Zhao, H. |
Publisher | Brunel University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://bura.brunel.ac.uk/handle/2438/16005 |
Page generated in 0.0021 seconds