Return to search

Computing binary black hole merger waveforms using openGR

One of the most important predictions of General Relativity, Einstein’s
theory of gravity, is the existence of gravitational radiation. The strongest
source of such radiation is expected to come from the merging of black holes.
Upgrades to large ground based interferometric detectors (LIGO, VIRGO,
GEO 600) have increased their sensitivity to the point that the first direct
observation of a gravitational wave is expected to occur within the next few
years. The chance of detection is greatly improved by the use of simulated
waveforms which can be used as templates for signal processing. Recent advances
in numerical relativity have allowed for long stable evolution of black
hole mergers and the generation of expected waveforms.

openGR is a modular, open framework black hole evolution code developed
at The University of Texas at Austin Center for Relativity. Based on the
BSSN (strongly hyperbolic) formulation of Einstein’s equations and the moving
puncture method, we are able to model the evolution of a binary black hole
system through the merger and extract the gravitational radiation produced.
Although we are generally interested in binary interactions, openGR is capable
of handling any number of black holes. This work serves as an overview of the
capabilities of openGR and a demonstration of the physics it can be used to
explore. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2012-05-5688
Date17 July 2012
CreatorsMcIvor, Greg Andrew
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf

Page generated in 0.0018 seconds