Return to search

Crosshole seismic processing of physical model and coal measures data

Crosshole seismic techniques can be used to gain a large amount of information about the properties of the rock mass between two or more boreholes. The bulk of this thesis is concerned with two crosshole seismic processing techniques and their application to real data. The first part of this thesis describes the application of traveltime and amplitude tomographic processing in the monitoring of a simulated EOR project. Two physical models were made, designed to simulate 'pre-flood' and 'post-flood' stages in an EOR project. The results of the tomography work indicate that it is beneficial to perform amplitude tomographic processing of cross-well data, as a complement to traveltime inversion, because of the different response of velocity and absorption to changes in liquid/gas saturations for real reservoir rocks. The velocity tomograms image the flood zone quite accurately. Amplitude tomography shows the flood zone as an area of higher absorption but does not image its boundaries as precisely, because multi-pathing and diffraction effects are not accounted for by the ray-based techniques used. Part two is concerned with the crosshole seismic reflection technique, using data acquired from a site in northern England. The processing of these data is complex and includes deconvolution, wavefield separation and migration to a depth section. The two surveys fail to pin-point accurately the position of a large fault; the disappointing results, compared to earlier work in Yorkshire, are attributed to poorer generation of compressional body waves in harder Coal Measures strata. The final part of this thesis describes the results from a pilot seismic reflection test over the Tertiary igneous centre on the Isle of Skye, Scotland. The results indicate that the base of a large granite body consists of interlayered granites and basic rocks between 2.1 and 2.4km below mean sea level.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:334336
Date January 1992
CreatorsLeggett, Miles
PublisherDurham University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://etheses.dur.ac.uk/5623/

Page generated in 0.0112 seconds