Thesis (S.M.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2010. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 163-166). / Data mining is a versatile and expanding field of study. We show the applications and uses of a variety of techniques in two very different realms: Emergency department (ED) length of stay prediction and visual analytics. For the ED, we investigate three data mining techniques to predict a patient's length of stay based solely on the information available at the patient's arrival. We achieve good predictive power using Decision Tree Analysis. Our results show that by using main characteristics about the patient, such as chief complaint, age, time of day of the arrival, and the condition of the ED, we can predict overall patient length of stay to specific hourly ranges with an accuracy of 80%. For visual analytics, we demonstrate how to mathematically determine the optimal number of clusters for a geospatial dataset containing both numeric and categorical data and then how to compare each cluster to the entire dataset as well as consider pairwise differences. We then incorporate our analytical methodology in visual display. Our results show that we can quickly and effectively measure differences between clusters and we can accurately find the optimal number of clusters in non-noisy datasets. / by Ashley M. Snyder. / S.M.
Identifer | oai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/61199 |
Date | January 2010 |
Creators | Snyder, Ashley M. (Ashley Marie) |
Contributors | Natasha Markuzon and Roy Welsch., Massachusetts Institute of Technology. Operations Research Center., Massachusetts Institute of Technology. Operations Research Center. |
Publisher | Massachusetts Institute of Technology |
Source Sets | M.I.T. Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | 166 p., application/pdf |
Rights | M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582 |
Page generated in 0.0019 seconds