Return to search

An analytics approach to problems in health care

Thesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2017. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Cataloged from student-submitted PDF version of thesis. / Includes bibliographical references (pages 99-102). / Health care expenditures in the United States have been increasing at unsustainable rates for more than thirty years with no signs of abating. Decisions to accept or reject deceased-donor kidneys offered to patients on the kidney transplantation wait-list currently rely on physician experience and intuition. Scoring rules to determine which end-stage liver disease patients are in most dire need of immediate transplantation have been haphazardly designed and reactively modified in an attempt to decrease waitlist mortality and increase fairness for cancer patients. For each of the above problem settings, we propose a framework that takes real-world data as input and draws upon modern data analytics methods ranging from mixed integer linear optimization to predictive machine learning to yield actionable insights that can add a significant edge over current practice. We describe an approach that, given insurance claims data, leads conservatively to a 10% reduction in health care costs in a study involving a large private US employer. Using historical data for patients on the kidney waitlist and organ match runs, we build a model that achieves an out-of-sample AUC of 0.87 when predicting whether or not a patient will receive a kidney of a particular quality within three, six, or twelve months. Given historical data for patients on the liver waitlist, we create a unified model that is capable of averting an additional 25% of adverse events in simulation compared to current practice without disadvantaging cancer patients. / by Jerry Lai Kung. / Ph. D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/112358
Date January 2017
CreatorsKung, Jerry Lai
ContributorsDimitris Bertsimas., Massachusetts Institute of Technology. Operations Research Center., Massachusetts Institute of Technology. Operations Research Center.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format102 pages, application/pdf
RightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0791 seconds