Return to search

Model Characteristics and Properties of Nanorobots in the Bloodstream

Many researchers have various visions and concepts about what the nanorobot will be like and what they will do. Most people see nanorobots doing a lot of functions in the medical field, having ideas of them doing cell repair, seek-and-destroy harmful diseases, clean arteries of cholesterol buildup, and much more. There are many questions that need to be answered as to what exactly is needed for the nanorobot to perform these medical functions. This project is not interested in the design of the nanorobot, but focuses on the characteristics and parameters that should be considered for a nanorobot to function through the bloodstream of a human body, specifically. To do this, a mobile robot was being used to traverse through a scaled model of the bloodstream. The scale model consisted of clear tubing or piping enclosed in a loop filled with liquid to nearly the exact viscosity of blood. The liquid had particles to emulate the various obstacles that a nanorobot would encounter like red blood cells and other molecules. The simulation had a continuous flow at the appropriate rate and pressure expected in the bloodstream. The pipe size was calculated setting the ratio of the diameter of a particular blood vessel over the diameter face of the assumed size of a nanorobot (DBV / DNR) equaling the diameter of the pipe (unknown variable) to the diameter face of the mobile robot (DPipe / Dsub). The pipe size came to be 6.66 inches, however pipe sizes come in increments of 2 inches larger than 4 inch pipes. It was settled to use 6 inch pipes. With this variable, the Reynolds number is the diameter of pipe times the velocity of the fluid over the kinematic viscosity of the fluid (R = (DPipe * ν) / υ). Setting the Reynolds value of the bloodstream equal to the Reynolds value of the model, the velocity of the pipe could be isolated. With that the flow rate was evaluated by multiplying the velocity to the cross-sectional area of the pipe (Flow Rate was equal to 0.2021392 gallon/minute). With all conditions met for an accurate model of the bloodstream, the physical model was designed and constructed then testing with the mobile robot was done to determine how the robot functions in the simulated environment. The results of the experiment showed that the mobile robot is influenced by the environment. The speed it travels decreases as viscosity of the fluid increases. The particles in the fluid also affect the speed along with the flow of the fluid. Mobility and control of the mobile robot were hindered with the increase of viscosity and the presence of particles. When traveling against the flow of the fluid it was further hindered. Stability of the craft increased along with viscosity but was chaotic traveling with particles. The performance of the mobile robot was affected by the conditions and parameters involved in the bloodstream. / A Thesis submitted to the Department of Industrial and Manufacturing Engineering in
partial fulfillment of the requirements for the degree of Master of Science. / Degree Awarded: Spring Semester 2005. / Date of Defense: April 4, 2005. / Bloodstream, Nanorobots, Nanorobot / Includes bibliographical references. / Yaw A. Owusu, Professor Directing Thesis; Rodney G. Roberts, Outside Committee Member; Reginald Parker, Committee Member; Chun Zhang, Committee Member.

Identiferoai:union.ndltd.org:fsu.edu/oai:fsu.digital.flvc.org:fsu_168630
ContributorsZimmer, Michael Makoto (authoraut), Owusu, Yaw A. (professor directing thesis), Roberts, Rodney G. (outside committee member), Parker, Reginald (committee member), Zhang, Chun (committee member), Department of Industrial and Manufacturing Engineering (degree granting department), Florida State University (degree granting institution)
PublisherFlorida State University
Source SetsFlorida State University
LanguageEnglish, English
Detected LanguageEnglish
TypeText, text
Format1 online resource, computer, application/pdf

Page generated in 0.0019 seconds